Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 April 2022 | Story Dr Olivia Kunguma | Photo Supplied
Dr-Olivia-Kunguma
Dr Olivia Kunguma is Lecturer in Strategic Disaster Management, Legal and Institutional Arrangements, and Management of Media Relations and Strategic Communication in the Disaster Management Training and Education Centre for Africa at the University of the Free State (UFS).

Opinion article by Dr Olivia Kunguma, Disaster Management Training and Education Centre for Africa, University of the Free State.
For more than four days, the eastern side of South Africa experienced devastating heavy rainfall, with KwaZulu-Natal (KZN) being hit the hardest. The persistent rains triggered flooding and mudslides. Several compounding impacts of the flooding and mudslides were recorded. The impact includes, but is not limited to, the death of more than 440 people; damage to infrastructure (telecommunication towers, roads, bridges, homes, power lines, etc.); car accidents; business and school closures; and missing people. Most disasters or incidents entail a potentially compounding process where one event leads to another. The stated hazards and impacts also led to a rise in desperate and disgruntled citizens who started protesting and looting. The civil unrest is attributed to the lack of services, such as access to water and electricity.

An incident of this magnitude requires the intervention of disaster management services, whose primary role is to coordinate relevant stakeholders to respond to the situation (Kunguma, 2022). The South African Disaster Management Act, 57 of 2002 (DMA) (as amended, Act 16 of 2015) (Republic of South Africa, 2002), used to manage and coordinate disaster management, mandates the disaster management centres to perform certain functions. One important function to note is the continuous coordination of multiple sectors and disciplines by planning and implementing measures aimed at risk reduction, rapid response, and post-disaster recovery and rehabilitation. 

The DMA is also used to declare certain incidents as disasters. Disasters can be declared in local, provincial, or national spheres of government. Since the flooding mostly affected KZN, there were appeals to declare the event a provincial disaster. The KZN Premier and the Minister of Cooperative Governance (CoGTA) and Traditional Affairs announced at press conferences (eNCA, 2022) that the event would be declared a disaster. The flooding and mudslides were classified as disastrous according to Section 23 of the DMA. This section prescribes that the National Disaster Management Centre must determine whether the event should be regarded as a disaster in terms of the DMA. The NDMC assesses the magnitude and severity of the event and then classify it as a local, provincial, or national disaster. On 13 April, Dr Mmaphaka Tau, the Head of the National Disaster Management Centre, declared the KZN floods a provincial disaster (CoGTA, 2022). A provincial disaster means that the event has affected more than one municipality, enabling the province to deal with the event effectively. 

The declaration of a disaster means that

• available resources such as facilities, vehicles, and funding are released; 
• personnel of the state organ are released to render emergency services; 
• the affected population is evacuated to temporary shelters;
• movement is regulated;
• information is disseminated; 
• temporary lines of communication are maintained or installed; and
• alcohol is suspended or limited in disaster-stricken areas.
Important to note is that the DMA does not apply to an incident that can be dealt with effectively in terms of contingency arrangements or other legislation that can address the consequences of the risk.

Flood relief efforts

The multidisciplinary and multisectoral nature of disaster management has led to several political stakeholders visiting the affected areas to assess the flooding in KZN. This included visits from the Mayor, Premier, Minister of Police, CoGTA Minister, and the President of South Africa. All the disaster management centres in the province have been activated to attend to the disaster. The emergency numbers of the centres were published on Twitter by the Presidency (PresidencyZA, 2022) and other government departments. The centres’ efforts include, but are not limited to, coordinating response; observing and monitoring weather information issued by authorities; disseminating early warning; issuing relief supplies such as blankets; continuing to assess the damage; evacuating the affected to places of safety (for example, all the community halls have been opened for shelter); and clearing up the damage. Stakeholders such as the South African Police Service (SAPS), Gift of the Givers, the South African Social Security Agency (SASSA), and the South African National Defence Force (SANDF) were coordinated by CoGTA (Disaster Management) to provide their services. At this point, the distribution of relief should be based on vulnerability assessments, with no political interference.

Determining the root causes 

The South African Weather Service (SAWS) predicted the expected heavy rainfall in time. The GFS weather forecast model of the United States of America has also predicted severe rainfall along the KZN coast since last week. There was a severe cut-off low system, a common kind of weather system that does not occur regularly but can occur often. In a cut-off low system, the low pressure causes air to rise, and when it does, it reaches a condensation level that forms clouds. When the cut-off low system came down along the coast, another system developed at a high altitude and combined with it, making it more intense. What was unusual, was that the cut-off low became stationary or ‘stalled’ over the KZN coast. Later, the cut-off low started turning more to the southeast. The cut-off low was then reclassified as a tropical cyclone or subtropical depression, named ‘ISSA’. 

In addition, the lack of infrastructure development in the coastal area could also be the cause of the flooding and mudslides. For example, the Isipingo River (Map of Isipingo River, 2022) was channelised with concrete embankments and confined in a narrow space, crossing the N2 in two places, without proper planning of water levees when building the N2 highway. When the river is flooded, the road would turn into a river. This kind of flooding also happened in 2019, so one would have expected the local government to have addressed this matter and that they would have done something about it. The water spills onto the road, as previous heavy seas have blocked the mouth of the river, and only a strong momentum of the river flow can break through the built-up sand. 

The flooding in residential areas such as Kloof and Hillcrest is due to the development of complexes that take up the natural land space where grass or trees would have allowed the water to penetrate the topsoil easily. In complexes, more than 50% of the area is covered with pavements and solid roofs that concentrate the run-off water, which drains into a channel not designed for that amount of water. The sudden fast-flowing water then quickly erodes the soil. Many places on the sides of the roads have concrete embankments, while other parts in between are without embankments. These open parts are where the water broke through, and landslides occurred on the various roads. These damages can also be attributed to developments on the top of the hills. “The town planners should not permit new complexes covering 70% of the area without considering redevelopment of water run-off and drainage management,” said Prof Sue Walker, an agricultural meteorologist at the University of the Free State, and a principal researcher at the Agricultural Research Council. 

Ms Nonala Ndlovu, the KZN CoGTA spokesperson, shared with eNCA News the possible causes of the flooding. The flooding is attributed to the poor drainage systems, exacerbated by littering in the communities. She, however, indicated that the non-stop rain was unprecedented and that even if the drainage systems were well serviced, it would still not be able to handle the high volume of water. She added that buildings in low-lying areas could not handle the influx of water (eNCA, 2022).

Flood recovery and future prevention

Investment in disaster risk reduction (DRR) efforts is needed more than disaster response efforts. Although the occurrence of heavy rain was predicted in time, the damage it caused showed that this timely prediction was ineffectual. Systematic approaches are needed to prepare for, prevent, and mitigate the frequency or severity of losses and damage caused by flooding. Surely, attention needs to be paid to research-informed town planning, building codes, land zoning, public awareness, flood legislation, and flood early warning systems, to name a few. 

Since disaster management has shown that it plays a leading and active role in responding to disasters, it also needs to play a leading role in reducing the risks. The KZN floods have exposed significant socio-economic and environmental vulnerabilities that require immediate attention if effective risk reduction is to be achieved.

UFS-DIMTEC is requesting donations of non-food items for the victims of the the KZN flood disaster. To donate, please contact Dr Tlou Raphela on +27 72 108 4987 or RaphelaTD@ufs.ac.za 

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept