Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 April 2022 | Story Dr Olivia Kunguma | Photo Supplied
Dr-Olivia-Kunguma
Dr Olivia Kunguma is Lecturer in Strategic Disaster Management, Legal and Institutional Arrangements, and Management of Media Relations and Strategic Communication in the Disaster Management Training and Education Centre for Africa at the University of the Free State (UFS).

Opinion article by Dr Olivia Kunguma, Disaster Management Training and Education Centre for Africa, University of the Free State.
For more than four days, the eastern side of South Africa experienced devastating heavy rainfall, with KwaZulu-Natal (KZN) being hit the hardest. The persistent rains triggered flooding and mudslides. Several compounding impacts of the flooding and mudslides were recorded. The impact includes, but is not limited to, the death of more than 440 people; damage to infrastructure (telecommunication towers, roads, bridges, homes, power lines, etc.); car accidents; business and school closures; and missing people. Most disasters or incidents entail a potentially compounding process where one event leads to another. The stated hazards and impacts also led to a rise in desperate and disgruntled citizens who started protesting and looting. The civil unrest is attributed to the lack of services, such as access to water and electricity.

An incident of this magnitude requires the intervention of disaster management services, whose primary role is to coordinate relevant stakeholders to respond to the situation (Kunguma, 2022). The South African Disaster Management Act, 57 of 2002 (DMA) (as amended, Act 16 of 2015) (Republic of South Africa, 2002), used to manage and coordinate disaster management, mandates the disaster management centres to perform certain functions. One important function to note is the continuous coordination of multiple sectors and disciplines by planning and implementing measures aimed at risk reduction, rapid response, and post-disaster recovery and rehabilitation. 

The DMA is also used to declare certain incidents as disasters. Disasters can be declared in local, provincial, or national spheres of government. Since the flooding mostly affected KZN, there were appeals to declare the event a provincial disaster. The KZN Premier and the Minister of Cooperative Governance (CoGTA) and Traditional Affairs announced at press conferences (eNCA, 2022) that the event would be declared a disaster. The flooding and mudslides were classified as disastrous according to Section 23 of the DMA. This section prescribes that the National Disaster Management Centre must determine whether the event should be regarded as a disaster in terms of the DMA. The NDMC assesses the magnitude and severity of the event and then classify it as a local, provincial, or national disaster. On 13 April, Dr Mmaphaka Tau, the Head of the National Disaster Management Centre, declared the KZN floods a provincial disaster (CoGTA, 2022). A provincial disaster means that the event has affected more than one municipality, enabling the province to deal with the event effectively. 

The declaration of a disaster means that

• available resources such as facilities, vehicles, and funding are released; 
• personnel of the state organ are released to render emergency services; 
• the affected population is evacuated to temporary shelters;
• movement is regulated;
• information is disseminated; 
• temporary lines of communication are maintained or installed; and
• alcohol is suspended or limited in disaster-stricken areas.
Important to note is that the DMA does not apply to an incident that can be dealt with effectively in terms of contingency arrangements or other legislation that can address the consequences of the risk.

Flood relief efforts

The multidisciplinary and multisectoral nature of disaster management has led to several political stakeholders visiting the affected areas to assess the flooding in KZN. This included visits from the Mayor, Premier, Minister of Police, CoGTA Minister, and the President of South Africa. All the disaster management centres in the province have been activated to attend to the disaster. The emergency numbers of the centres were published on Twitter by the Presidency (PresidencyZA, 2022) and other government departments. The centres’ efforts include, but are not limited to, coordinating response; observing and monitoring weather information issued by authorities; disseminating early warning; issuing relief supplies such as blankets; continuing to assess the damage; evacuating the affected to places of safety (for example, all the community halls have been opened for shelter); and clearing up the damage. Stakeholders such as the South African Police Service (SAPS), Gift of the Givers, the South African Social Security Agency (SASSA), and the South African National Defence Force (SANDF) were coordinated by CoGTA (Disaster Management) to provide their services. At this point, the distribution of relief should be based on vulnerability assessments, with no political interference.

Determining the root causes 

The South African Weather Service (SAWS) predicted the expected heavy rainfall in time. The GFS weather forecast model of the United States of America has also predicted severe rainfall along the KZN coast since last week. There was a severe cut-off low system, a common kind of weather system that does not occur regularly but can occur often. In a cut-off low system, the low pressure causes air to rise, and when it does, it reaches a condensation level that forms clouds. When the cut-off low system came down along the coast, another system developed at a high altitude and combined with it, making it more intense. What was unusual, was that the cut-off low became stationary or ‘stalled’ over the KZN coast. Later, the cut-off low started turning more to the southeast. The cut-off low was then reclassified as a tropical cyclone or subtropical depression, named ‘ISSA’. 

In addition, the lack of infrastructure development in the coastal area could also be the cause of the flooding and mudslides. For example, the Isipingo River (Map of Isipingo River, 2022) was channelised with concrete embankments and confined in a narrow space, crossing the N2 in two places, without proper planning of water levees when building the N2 highway. When the river is flooded, the road would turn into a river. This kind of flooding also happened in 2019, so one would have expected the local government to have addressed this matter and that they would have done something about it. The water spills onto the road, as previous heavy seas have blocked the mouth of the river, and only a strong momentum of the river flow can break through the built-up sand. 

The flooding in residential areas such as Kloof and Hillcrest is due to the development of complexes that take up the natural land space where grass or trees would have allowed the water to penetrate the topsoil easily. In complexes, more than 50% of the area is covered with pavements and solid roofs that concentrate the run-off water, which drains into a channel not designed for that amount of water. The sudden fast-flowing water then quickly erodes the soil. Many places on the sides of the roads have concrete embankments, while other parts in between are without embankments. These open parts are where the water broke through, and landslides occurred on the various roads. These damages can also be attributed to developments on the top of the hills. “The town planners should not permit new complexes covering 70% of the area without considering redevelopment of water run-off and drainage management,” said Prof Sue Walker, an agricultural meteorologist at the University of the Free State, and a principal researcher at the Agricultural Research Council. 

Ms Nonala Ndlovu, the KZN CoGTA spokesperson, shared with eNCA News the possible causes of the flooding. The flooding is attributed to the poor drainage systems, exacerbated by littering in the communities. She, however, indicated that the non-stop rain was unprecedented and that even if the drainage systems were well serviced, it would still not be able to handle the high volume of water. She added that buildings in low-lying areas could not handle the influx of water (eNCA, 2022).

Flood recovery and future prevention

Investment in disaster risk reduction (DRR) efforts is needed more than disaster response efforts. Although the occurrence of heavy rain was predicted in time, the damage it caused showed that this timely prediction was ineffectual. Systematic approaches are needed to prepare for, prevent, and mitigate the frequency or severity of losses and damage caused by flooding. Surely, attention needs to be paid to research-informed town planning, building codes, land zoning, public awareness, flood legislation, and flood early warning systems, to name a few. 

Since disaster management has shown that it plays a leading and active role in responding to disasters, it also needs to play a leading role in reducing the risks. The KZN floods have exposed significant socio-economic and environmental vulnerabilities that require immediate attention if effective risk reduction is to be achieved.

UFS-DIMTEC is requesting donations of non-food items for the victims of the the KZN flood disaster. To donate, please contact Dr Tlou Raphela on +27 72 108 4987 or RaphelaTD@ufs.ac.za 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept