Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 April 2022 | Story Dr Olivia Kunguma | Photo Supplied
Dr-Olivia-Kunguma
Dr Olivia Kunguma is Lecturer in Strategic Disaster Management, Legal and Institutional Arrangements, and Management of Media Relations and Strategic Communication in the Disaster Management Training and Education Centre for Africa at the University of the Free State (UFS).

Opinion article by Dr Olivia Kunguma, Disaster Management Training and Education Centre for Africa, University of the Free State.
For more than four days, the eastern side of South Africa experienced devastating heavy rainfall, with KwaZulu-Natal (KZN) being hit the hardest. The persistent rains triggered flooding and mudslides. Several compounding impacts of the flooding and mudslides were recorded. The impact includes, but is not limited to, the death of more than 440 people; damage to infrastructure (telecommunication towers, roads, bridges, homes, power lines, etc.); car accidents; business and school closures; and missing people. Most disasters or incidents entail a potentially compounding process where one event leads to another. The stated hazards and impacts also led to a rise in desperate and disgruntled citizens who started protesting and looting. The civil unrest is attributed to the lack of services, such as access to water and electricity.

An incident of this magnitude requires the intervention of disaster management services, whose primary role is to coordinate relevant stakeholders to respond to the situation (Kunguma, 2022). The South African Disaster Management Act, 57 of 2002 (DMA) (as amended, Act 16 of 2015) (Republic of South Africa, 2002), used to manage and coordinate disaster management, mandates the disaster management centres to perform certain functions. One important function to note is the continuous coordination of multiple sectors and disciplines by planning and implementing measures aimed at risk reduction, rapid response, and post-disaster recovery and rehabilitation. 

The DMA is also used to declare certain incidents as disasters. Disasters can be declared in local, provincial, or national spheres of government. Since the flooding mostly affected KZN, there were appeals to declare the event a provincial disaster. The KZN Premier and the Minister of Cooperative Governance (CoGTA) and Traditional Affairs announced at press conferences (eNCA, 2022) that the event would be declared a disaster. The flooding and mudslides were classified as disastrous according to Section 23 of the DMA. This section prescribes that the National Disaster Management Centre must determine whether the event should be regarded as a disaster in terms of the DMA. The NDMC assesses the magnitude and severity of the event and then classify it as a local, provincial, or national disaster. On 13 April, Dr Mmaphaka Tau, the Head of the National Disaster Management Centre, declared the KZN floods a provincial disaster (CoGTA, 2022). A provincial disaster means that the event has affected more than one municipality, enabling the province to deal with the event effectively. 

The declaration of a disaster means that

• available resources such as facilities, vehicles, and funding are released; 
• personnel of the state organ are released to render emergency services; 
• the affected population is evacuated to temporary shelters;
• movement is regulated;
• information is disseminated; 
• temporary lines of communication are maintained or installed; and
• alcohol is suspended or limited in disaster-stricken areas.
Important to note is that the DMA does not apply to an incident that can be dealt with effectively in terms of contingency arrangements or other legislation that can address the consequences of the risk.

Flood relief efforts

The multidisciplinary and multisectoral nature of disaster management has led to several political stakeholders visiting the affected areas to assess the flooding in KZN. This included visits from the Mayor, Premier, Minister of Police, CoGTA Minister, and the President of South Africa. All the disaster management centres in the province have been activated to attend to the disaster. The emergency numbers of the centres were published on Twitter by the Presidency (PresidencyZA, 2022) and other government departments. The centres’ efforts include, but are not limited to, coordinating response; observing and monitoring weather information issued by authorities; disseminating early warning; issuing relief supplies such as blankets; continuing to assess the damage; evacuating the affected to places of safety (for example, all the community halls have been opened for shelter); and clearing up the damage. Stakeholders such as the South African Police Service (SAPS), Gift of the Givers, the South African Social Security Agency (SASSA), and the South African National Defence Force (SANDF) were coordinated by CoGTA (Disaster Management) to provide their services. At this point, the distribution of relief should be based on vulnerability assessments, with no political interference.

Determining the root causes 

The South African Weather Service (SAWS) predicted the expected heavy rainfall in time. The GFS weather forecast model of the United States of America has also predicted severe rainfall along the KZN coast since last week. There was a severe cut-off low system, a common kind of weather system that does not occur regularly but can occur often. In a cut-off low system, the low pressure causes air to rise, and when it does, it reaches a condensation level that forms clouds. When the cut-off low system came down along the coast, another system developed at a high altitude and combined with it, making it more intense. What was unusual, was that the cut-off low became stationary or ‘stalled’ over the KZN coast. Later, the cut-off low started turning more to the southeast. The cut-off low was then reclassified as a tropical cyclone or subtropical depression, named ‘ISSA’. 

In addition, the lack of infrastructure development in the coastal area could also be the cause of the flooding and mudslides. For example, the Isipingo River (Map of Isipingo River, 2022) was channelised with concrete embankments and confined in a narrow space, crossing the N2 in two places, without proper planning of water levees when building the N2 highway. When the river is flooded, the road would turn into a river. This kind of flooding also happened in 2019, so one would have expected the local government to have addressed this matter and that they would have done something about it. The water spills onto the road, as previous heavy seas have blocked the mouth of the river, and only a strong momentum of the river flow can break through the built-up sand. 

The flooding in residential areas such as Kloof and Hillcrest is due to the development of complexes that take up the natural land space where grass or trees would have allowed the water to penetrate the topsoil easily. In complexes, more than 50% of the area is covered with pavements and solid roofs that concentrate the run-off water, which drains into a channel not designed for that amount of water. The sudden fast-flowing water then quickly erodes the soil. Many places on the sides of the roads have concrete embankments, while other parts in between are without embankments. These open parts are where the water broke through, and landslides occurred on the various roads. These damages can also be attributed to developments on the top of the hills. “The town planners should not permit new complexes covering 70% of the area without considering redevelopment of water run-off and drainage management,” said Prof Sue Walker, an agricultural meteorologist at the University of the Free State, and a principal researcher at the Agricultural Research Council. 

Ms Nonala Ndlovu, the KZN CoGTA spokesperson, shared with eNCA News the possible causes of the flooding. The flooding is attributed to the poor drainage systems, exacerbated by littering in the communities. She, however, indicated that the non-stop rain was unprecedented and that even if the drainage systems were well serviced, it would still not be able to handle the high volume of water. She added that buildings in low-lying areas could not handle the influx of water (eNCA, 2022).

Flood recovery and future prevention

Investment in disaster risk reduction (DRR) efforts is needed more than disaster response efforts. Although the occurrence of heavy rain was predicted in time, the damage it caused showed that this timely prediction was ineffectual. Systematic approaches are needed to prepare for, prevent, and mitigate the frequency or severity of losses and damage caused by flooding. Surely, attention needs to be paid to research-informed town planning, building codes, land zoning, public awareness, flood legislation, and flood early warning systems, to name a few. 

Since disaster management has shown that it plays a leading and active role in responding to disasters, it also needs to play a leading role in reducing the risks. The KZN floods have exposed significant socio-economic and environmental vulnerabilities that require immediate attention if effective risk reduction is to be achieved.

UFS-DIMTEC is requesting donations of non-food items for the victims of the the KZN flood disaster. To donate, please contact Dr Tlou Raphela on +27 72 108 4987 or RaphelaTD@ufs.ac.za 

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept