Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 August 2022 | Story André Damons | Photo Supplied
Dr Walter Janse van Rensburg
Dr Walter Janse van Rensburg, Senior Lecturer in the Human Molecular Biology Unit, Department of Haematology and Cell Biology in the UFS School of Biomedical Sciences, says new research found that men of European descent over the age of 50 are the most vulnerable for the development of atherosclerosis.

A new study by researchers in the Human Molecular Biology Unit in the School of Biomedical Sciences at the University of the Free State (UFS) into atherosclerosis in the South African population found that men of European descent over the age of 50 are the most vulnerable for the development of atherosclerosis – the most common disorder associated with cardiovascular diseases (CVDs). Nearly half of men in this group had visible signs of atherosclerosis in the coronary arteries of the heart. 

This was in contrast to the only roughly one-tenth of the African-descent males and females in the same age bracket. More than a third of women of European descent over 50 had visible atherosclerosis in their coronary arteries. One hypothesis regarding a possible explanation for this discrepancy is based on the theory that socioeconomic status may be a driving force behind CVD.

Risks factor for cardiovascular diseases

Dr Walter Janse van Rensburg, Senior Lecturer in the Human Molecular Biology Unit at the School of Biomedical Sciences, UFS, and principal researcher, says the study was conceptualised during 2020s COVID-19 pandemic, due to reports of excessive blood clots associated with both acute COVID-19 infection and some of the SARS-CoV2 vaccines. However, limited data existed in our region regarding the other underlying causes for blood clot formation, such as atherosclerotic plaque rupture. The data was collected during a couple of months in 2021. The data was collected out of more than 10,000 case files spanning 10 years. The study is still ongoing.

“Atherosclerosis remains a major risk factor for CVD, and thus, believed to be a good indicator of the CVD profile in a population, yet little is known on its prevalence in sub-Saharan African populations. We aimed to determine the prevalence of atherosclerosis in a diverse South African population as found in post-mortem investigations. A retrospective file audit was done on 10,240 forensic post-mortem reports done at a forensic pathology mortuary in South Africa, over 10 years,” writes Dr Janse van Rensburg in the Abstract of the research article. 

According to him, cardiovascular diseases are reportedly the No 1 cause of mortality worldwide. According to the latest report from Stats SA, diseases of the circulatory system account for nearly a fifth of all deaths in South Africa.
“CVD is a multifactorial disorder, however, the presence of atherosclerosis (an inflammatory condition of artery walls) is the most common disorder associated with CVD. In order to assist in the prevention of the formation and progression of atherosclerosis, one can manage factors that have been associated with a higher risk for atherosclerosis, such as the use of tobacco, hypertension, elevated cholesterol, obesity, HIV infection and diabetes,” says Dr Janse van Rensburg.

Reasons behind different population’s mortality rate

It has been proposed, says Dr Janse van Rensburg, that socioeconomic status is possibly one of the essential roleplayers in CVD aetiology. The socioeconomic inequality in South Africa is well known, with an economic inequality Gini coefficient of 0.63 (the highest in the world). One study reported that in the Free State province, in the non-agricultural sector, the average household income for a European-descent household is roughly 4.35-times higher than the average African-descent household income. 

“Therefore, it is postulated that wealthier people, in the South African context, historically people of European descent, have the means to afford and adopt lifestyles that contribute to the increased risk of lifestyle diseases such as obesity, hypercholesterolaemia and diabetes, which are associated with a higher risk to develop CVD.

“We postulate that CVD-related deaths are traditionally lower among South Africans of African descent compared to the other ethnic populations due to the historical socioeconomic discrepancy between people of African descent and other population groups in higher-income countries.”

The study also found that the prevalence of CVDs and the incidence of premature CVD-related deaths are steadily increasing in both rural and urban communities and across the socioeconomic spectrum. The theory of epidemiological transition says that in populations with improved living conditions and better access to healthcare, the proportion of deaths caused by infectious diseases will decrease, and the proportion of deaths due to more chronic “man-made” lifestyle-related diseases, such as CVD, will increase.

However, our population’s socioeconomic status is not the only driving force behind CVD. Therefore, we theorise there has been an upward trend in South Africa across all regions to improve the access to better food and better healthcare, consequently resulting in an increase in CVD-related morbidity and mortality statistics.

“For all population groups, males are more affected than females within their demographic group. This may also be possibly attributed to the socioeconomic status and access to the healthcare gender-gap differential in the country.”

Studies are vital in raising public awareness

Dr Janse van Rensburg says that studies such as this are vital in raising public awareness regarding disorders associated with the lifestyle choices people make. However, a multidisciplinary approach is needed to ultimately create a lasting impact. 

“We hope that our findings will assist in identifying specific groups with a possible increased risk for CVD, and that we will inspire more focused research to identify potential high-risk behaviours within these groups that may eventually result in the enhancement of public health policies and awareness campaigns in our region.

“Recently, another article has been accepted for publication regarding the prevalence of excessive blood clots (thrombosis) as the underlying cause of death in our study cohort, further contributing to our understanding of the origins and contributory factors of CVDs in our region.”

News Archive

UFS receives R13,7 Million for Research into Prehistoric Organisms
2007-03-27

Some of the guests attending the launch of the research contract are: Dr Siyabulela Ntutela (Deputy Director: Biotechnology at the Department of Science and Technology), Dr Godfrey Netswera (Manager of Thuthuka and the Support Programme at the National Research Foundation (NRF)), Dr Esta van Heerden (Platform Manager and lecturer at the Department of Microbial, Biochemical and Food Biotechnology at the UFS), Mr Butana Mboniswa (Chief Executive Officer of BioPAD), and Mr Vuyisele Phehani (Portfolio Manager for BioPAD).
Photo: Leonie Bolleurs

The University of the Free State (UFS) has been awarded a massive R13,7 million contract to conduct research into prehistoric micro-organisms which live under extreme conditions, for example in mineshafts.

This is one of the biggest research contracts awarded to the UFS in recent years.

The biotechnology research contract was awarded to the UFS by BioPAD, a South African biotechnology company that brokers partnerships between researchers, entrepreneurs, business, government and other stakeholders to promote innovation and create sustainable biotechnology businesses.

The project is endorsed by the Department of Science and Technology and the National Research Foundation (NRF), which contributes to the bursaries of the 17 postgraduate students on the programme.

The contract involves the establishment of a Platform for Metagenomics -  a technique which allows researchers to extract the DNA from microbes in their natural environment and investigate it in a laboratory. 

“Through this platform we will be able to understand deepmine microbial populations
and their potential application in the search for life in outer space.  It is most likely
that, if life were to be found on other planets in our solar system, it would probably
resemble that which existed millions of years ago on earth.  Apart from all this, these
organisms have unique properties one can exploit in biotechnological application for
South Africa and its community,” said Dr Esta van Heerden, platform manager and
lecturer at the UFS Department of Microbial, Biochemical and Food Biotechnology.
She is assisted by her collegues, Prof. Derek Litthauer and Dr Lizelle Piater.

“The platform aims to tap into the unique genetic material in South African mines
which will lead to the discovery of new genes and their products.  These new and unique products will find application in the medical field (anti-cancer, anti-bacterial en anti-viral cures), the industrial sector (nanotechnology, commercial washing agents and the food industry), environmental sector (pollution management, demolition of harmful metals and other toxic waste),” said Dr Van Heerden.

According to Dr Van Heerden, the Metagenomics Platforms stems from the Life in
Extreme Environments (LExEN) programme which was started in 1994 by Princeton
University in the United States of America (USA) in South African mines with grants
from among others the National Aeronautics and Space Administration (NASA) and
the National Science Foundation (NSF) in the USA.  Other international collaborators
on the project include Geosynec Consultants Inc. (USA), Oak Ridge National
Laboratory (USA), the University of Tennessee (USA) and in South Africa the
Universities of the Witwatersrand, North West and Limpopo and companies like BHP
Billiton, MINTEK and mining companies like Harmony, Gold Fields and AngloGold
Ashanti.

The research field laboratory of the Metagenomics Platform, which was situated in
Glen Harvey, was moved to the Main Campus of the UFS in Bloemfontein.  “In this
way the university has become the central hub for all research programmes.  We are
also the liaison between the LExEN programme and the various mining companies
involved,” said Dr Van Heerden.  The new laboratory was introduced during the
launch of the research contract.

“Our decision to commit BioPAD to this project stems from the company’s commitment to advance human capacity development to strengthen South Africa’s research infrastructure.  It is also part of our aim to create and protect intellectual property,” said Mr Butana Mboniswa, Chief Executive Officer of BioPAD.

Talking on behalf of the UFS senior management, Prof. Teuns Verschoor, Vice-Rector
of Academic Operations, said that the university shares the excitement to be part of
the exploration of unknown forms of life, the discovery of new genes and
their products and in applying newly gained knowledge to better understand our
universe.

Media release
Issued by: Lacea Loader
Assistant Director: Media Liaison 
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za
27 March 2007

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept