Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 August 2022 | Story André Damons | Photo Supplied
Dr Walter Janse van Rensburg
Dr Walter Janse van Rensburg, Senior Lecturer in the Human Molecular Biology Unit, Department of Haematology and Cell Biology in the UFS School of Biomedical Sciences, says new research found that men of European descent over the age of 50 are the most vulnerable for the development of atherosclerosis.

A new study by researchers in the Human Molecular Biology Unit in the School of Biomedical Sciences at the University of the Free State (UFS) into atherosclerosis in the South African population found that men of European descent over the age of 50 are the most vulnerable for the development of atherosclerosis – the most common disorder associated with cardiovascular diseases (CVDs). Nearly half of men in this group had visible signs of atherosclerosis in the coronary arteries of the heart. 

This was in contrast to the only roughly one-tenth of the African-descent males and females in the same age bracket. More than a third of women of European descent over 50 had visible atherosclerosis in their coronary arteries. One hypothesis regarding a possible explanation for this discrepancy is based on the theory that socioeconomic status may be a driving force behind CVD.

Risks factor for cardiovascular diseases

Dr Walter Janse van Rensburg, Senior Lecturer in the Human Molecular Biology Unit at the School of Biomedical Sciences, UFS, and principal researcher, says the study was conceptualised during 2020s COVID-19 pandemic, due to reports of excessive blood clots associated with both acute COVID-19 infection and some of the SARS-CoV2 vaccines. However, limited data existed in our region regarding the other underlying causes for blood clot formation, such as atherosclerotic plaque rupture. The data was collected during a couple of months in 2021. The data was collected out of more than 10,000 case files spanning 10 years. The study is still ongoing.

“Atherosclerosis remains a major risk factor for CVD, and thus, believed to be a good indicator of the CVD profile in a population, yet little is known on its prevalence in sub-Saharan African populations. We aimed to determine the prevalence of atherosclerosis in a diverse South African population as found in post-mortem investigations. A retrospective file audit was done on 10,240 forensic post-mortem reports done at a forensic pathology mortuary in South Africa, over 10 years,” writes Dr Janse van Rensburg in the Abstract of the research article. 

According to him, cardiovascular diseases are reportedly the No 1 cause of mortality worldwide. According to the latest report from Stats SA, diseases of the circulatory system account for nearly a fifth of all deaths in South Africa.
“CVD is a multifactorial disorder, however, the presence of atherosclerosis (an inflammatory condition of artery walls) is the most common disorder associated with CVD. In order to assist in the prevention of the formation and progression of atherosclerosis, one can manage factors that have been associated with a higher risk for atherosclerosis, such as the use of tobacco, hypertension, elevated cholesterol, obesity, HIV infection and diabetes,” says Dr Janse van Rensburg.

Reasons behind different population’s mortality rate

It has been proposed, says Dr Janse van Rensburg, that socioeconomic status is possibly one of the essential roleplayers in CVD aetiology. The socioeconomic inequality in South Africa is well known, with an economic inequality Gini coefficient of 0.63 (the highest in the world). One study reported that in the Free State province, in the non-agricultural sector, the average household income for a European-descent household is roughly 4.35-times higher than the average African-descent household income. 

“Therefore, it is postulated that wealthier people, in the South African context, historically people of European descent, have the means to afford and adopt lifestyles that contribute to the increased risk of lifestyle diseases such as obesity, hypercholesterolaemia and diabetes, which are associated with a higher risk to develop CVD.

“We postulate that CVD-related deaths are traditionally lower among South Africans of African descent compared to the other ethnic populations due to the historical socioeconomic discrepancy between people of African descent and other population groups in higher-income countries.”

The study also found that the prevalence of CVDs and the incidence of premature CVD-related deaths are steadily increasing in both rural and urban communities and across the socioeconomic spectrum. The theory of epidemiological transition says that in populations with improved living conditions and better access to healthcare, the proportion of deaths caused by infectious diseases will decrease, and the proportion of deaths due to more chronic “man-made” lifestyle-related diseases, such as CVD, will increase.

However, our population’s socioeconomic status is not the only driving force behind CVD. Therefore, we theorise there has been an upward trend in South Africa across all regions to improve the access to better food and better healthcare, consequently resulting in an increase in CVD-related morbidity and mortality statistics.

“For all population groups, males are more affected than females within their demographic group. This may also be possibly attributed to the socioeconomic status and access to the healthcare gender-gap differential in the country.”

Studies are vital in raising public awareness

Dr Janse van Rensburg says that studies such as this are vital in raising public awareness regarding disorders associated with the lifestyle choices people make. However, a multidisciplinary approach is needed to ultimately create a lasting impact. 

“We hope that our findings will assist in identifying specific groups with a possible increased risk for CVD, and that we will inspire more focused research to identify potential high-risk behaviours within these groups that may eventually result in the enhancement of public health policies and awareness campaigns in our region.

“Recently, another article has been accepted for publication regarding the prevalence of excessive blood clots (thrombosis) as the underlying cause of death in our study cohort, further contributing to our understanding of the origins and contributory factors of CVDs in our region.”

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept