Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 August 2022 | Story André Damons | Photo Supplied
Dr Walter Janse van Rensburg
Dr Walter Janse van Rensburg, Senior Lecturer in the Human Molecular Biology Unit, Department of Haematology and Cell Biology in the UFS School of Biomedical Sciences, says new research found that men of European descent over the age of 50 are the most vulnerable for the development of atherosclerosis.

A new study by researchers in the Human Molecular Biology Unit in the School of Biomedical Sciences at the University of the Free State (UFS) into atherosclerosis in the South African population found that men of European descent over the age of 50 are the most vulnerable for the development of atherosclerosis – the most common disorder associated with cardiovascular diseases (CVDs). Nearly half of men in this group had visible signs of atherosclerosis in the coronary arteries of the heart. 

This was in contrast to the only roughly one-tenth of the African-descent males and females in the same age bracket. More than a third of women of European descent over 50 had visible atherosclerosis in their coronary arteries. One hypothesis regarding a possible explanation for this discrepancy is based on the theory that socioeconomic status may be a driving force behind CVD.

Risks factor for cardiovascular diseases

Dr Walter Janse van Rensburg, Senior Lecturer in the Human Molecular Biology Unit at the School of Biomedical Sciences, UFS, and principal researcher, says the study was conceptualised during 2020s COVID-19 pandemic, due to reports of excessive blood clots associated with both acute COVID-19 infection and some of the SARS-CoV2 vaccines. However, limited data existed in our region regarding the other underlying causes for blood clot formation, such as atherosclerotic plaque rupture. The data was collected during a couple of months in 2021. The data was collected out of more than 10,000 case files spanning 10 years. The study is still ongoing.

“Atherosclerosis remains a major risk factor for CVD, and thus, believed to be a good indicator of the CVD profile in a population, yet little is known on its prevalence in sub-Saharan African populations. We aimed to determine the prevalence of atherosclerosis in a diverse South African population as found in post-mortem investigations. A retrospective file audit was done on 10,240 forensic post-mortem reports done at a forensic pathology mortuary in South Africa, over 10 years,” writes Dr Janse van Rensburg in the Abstract of the research article. 

According to him, cardiovascular diseases are reportedly the No 1 cause of mortality worldwide. According to the latest report from Stats SA, diseases of the circulatory system account for nearly a fifth of all deaths in South Africa.
“CVD is a multifactorial disorder, however, the presence of atherosclerosis (an inflammatory condition of artery walls) is the most common disorder associated with CVD. In order to assist in the prevention of the formation and progression of atherosclerosis, one can manage factors that have been associated with a higher risk for atherosclerosis, such as the use of tobacco, hypertension, elevated cholesterol, obesity, HIV infection and diabetes,” says Dr Janse van Rensburg.

Reasons behind different population’s mortality rate

It has been proposed, says Dr Janse van Rensburg, that socioeconomic status is possibly one of the essential roleplayers in CVD aetiology. The socioeconomic inequality in South Africa is well known, with an economic inequality Gini coefficient of 0.63 (the highest in the world). One study reported that in the Free State province, in the non-agricultural sector, the average household income for a European-descent household is roughly 4.35-times higher than the average African-descent household income. 

“Therefore, it is postulated that wealthier people, in the South African context, historically people of European descent, have the means to afford and adopt lifestyles that contribute to the increased risk of lifestyle diseases such as obesity, hypercholesterolaemia and diabetes, which are associated with a higher risk to develop CVD.

“We postulate that CVD-related deaths are traditionally lower among South Africans of African descent compared to the other ethnic populations due to the historical socioeconomic discrepancy between people of African descent and other population groups in higher-income countries.”

The study also found that the prevalence of CVDs and the incidence of premature CVD-related deaths are steadily increasing in both rural and urban communities and across the socioeconomic spectrum. The theory of epidemiological transition says that in populations with improved living conditions and better access to healthcare, the proportion of deaths caused by infectious diseases will decrease, and the proportion of deaths due to more chronic “man-made” lifestyle-related diseases, such as CVD, will increase.

However, our population’s socioeconomic status is not the only driving force behind CVD. Therefore, we theorise there has been an upward trend in South Africa across all regions to improve the access to better food and better healthcare, consequently resulting in an increase in CVD-related morbidity and mortality statistics.

“For all population groups, males are more affected than females within their demographic group. This may also be possibly attributed to the socioeconomic status and access to the healthcare gender-gap differential in the country.”

Studies are vital in raising public awareness

Dr Janse van Rensburg says that studies such as this are vital in raising public awareness regarding disorders associated with the lifestyle choices people make. However, a multidisciplinary approach is needed to ultimately create a lasting impact. 

“We hope that our findings will assist in identifying specific groups with a possible increased risk for CVD, and that we will inspire more focused research to identify potential high-risk behaviours within these groups that may eventually result in the enhancement of public health policies and awareness campaigns in our region.

“Recently, another article has been accepted for publication regarding the prevalence of excessive blood clots (thrombosis) as the underlying cause of death in our study cohort, further contributing to our understanding of the origins and contributory factors of CVDs in our region.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept