Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 August 2022 | Story Leonie Bolleurs | Photo Supplied
Marike Stander
For the first time in her life, Marike Stander accompanied a group of researchers for their annual relief expedition with the SA Agulhas II from Cape Town to Marion Island, where she assisted with fieldwork and data collection. Here she is pictured at the snow-covered Karookop.


The Prince Edward Islands are the most southerly part of South Africa’s official territory and consist of Marion Island and Prince Edward Island. On Marion Island, about 270 km² in size and situated in the sub-Antarctic Indian Ocean, 1 920 km from the South African shore, activities are restricted to research and conservation management. 

This is where Marike Stander, Lecturer in the Department of Geography at the University of the Free State (UFS), was granted the opportunity to assist a research group led by Prof Werner Nel (University of Fort Hare) and Prof David Hedding (Unisa) – based on her knowledge and experience in tracer sampling. 

Back home, Stander is working to complete her doctoral research, investigating the often-overlooked major issue of soil erosion. She believes the management of soil erosion, a global issue, is key. According to her, it impacts the storage of carbon and nutrients, and therefore the production of food, but it can also act as a pollutant in water sources.

Fieldwork and data collection

She was approached by the Sub-Antarctic Landscape-Climate Interactions (SANAP-LCI) Research Group, a project funded by the South African National Antarctic Programme-NRF. One of their research objectives is to explore the viability of using geochemical tracers in the substrate on Marion Island, the focus of Stander’s doctoral research. 

With the support of the UFS Faculty of Natural and Agricultural Sciences and the Department of Geography, she was released to accompany the research group for the first time in her life on their annual relief expedition with the SA Agulhas II from Cape Town to Marion Island, where she assisted with fieldwork and data collection. During this three-week field campaign, Stander collected sediment samples for the tracer project, as well as rock and peat samples.

With the SANAP-LCI group collaborating with research labs in the United Kingdom and France, she was able to bring her expertise to the table, while at the same time learning about other geochronological techniques and field methods.  

She was also excited about the exposure to the work of a myriad of researchers in various fields from around the world. Stander says in a time when the importance of interdisciplinary and multidisciplinary work is being emphasised, it was invaluable to meet and learn from various distinguished scientists.  “It changes your perspective and allows your mind to not only think outside the box, but also to think about all the interconnected boxes and how they affect each other.”

She believes being exposed to various sampling strategies from different scientists also broaden one’s skill set and experience. “Using your capabilities and skills in a different setting builds depth to your skill set and expands your horizon.”

Volcanoes and albatrosses 

Very few people get the opportunity to visit Marion Island. Thus, just the chance to visit and experience life on the island is described by many as one of their most memorable events. Always fascinated by volcanic features, Stander was completely captivated by this relatively young volcanic island. “There are so many interesting features, such as the pahoehoe and a’a lava flows, as well as the numerous scoria cones,” describes Stander, who cannot believe that she managed to cover the vast distances in gumboots, the only footwear that are effective to cross anything – from razor-sharp rocks to deep waterlogged mires.

She was also overwhelmed by the flora and fauna on the island.  “It is so very different from what we are used to and from what I’ve experienced before.  Seeing these animals in a relatively untouched remote location really captivated me,” she says. 

“More specifically, I fell in love with the albatrosses.  These remarkable seabirds cover vast distances over the ocean looking for food. They are unfortunately threatened by the invasive mice on Marion Island.” Stander invites people to help organisations such as Mouse-Free Marion to take on the difficult task of eradicating these mice. Find them at www.mousefreemarion.org.

On a lighter note, Stander also learnt a thing or two that was totally new to her. For instance, that there are radio telescopes installed on the radio-quiet Marion Island, searching for the universe’s first stars. And that male elephant seals that drive out all other male competitors during mating season are called ‘beachmasters’. She learned that these ‘beachmaster’ bulls have a harem of female elephant seals and can weight up to three tons.


• She wishes to thank Prof Werner Nel, Prof David Hedding, and Dr Liezel Rudolph (UFS) from the SANAP-LCI project for affording her the opportunity to join the expedition. She also thanks the SANAP-NRF and the Department of Forestry, Fisheries, and the Environment for making the expedition possible. 

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept