Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

Louzanne breaks own world record in Switzerland
2017-06-09

Description: Louzanne breaks own world record  Tags: Louzanne breaks own world record

Rufus Botha (left), coach of the athlete Louzanne Coetzee,
went overseas with Coetzee and her guide,
Khothatso Mokone, for a race for the first time.
Coetzee improved her T11 5 000 m world record with more
than 20 seconds in Switzerland.
Photo: Johan Roux

She fought against illness, had to get the green light from medical personnel shortly before her main race, and was very nervous. However, on 5 June 2017, the blind athlete Louzanne Coetzee managed to improve the T11 5 000 m world record with more than 20 seconds.

The Kovsie star’s time of 18:14.27 at the ParAthletics Grand Prix in Nottwil, Switzerland, was approximately 23 seconds faster than her previous world record (18:37.23). In addition, Coetzee, who works at the Institute for Reconciliation and Social Justice at the University of the Free State, also improved the South African T11 800 m record to 2:30.18 on 2 June 2017, and her 4:59.54 on 3 June 2017 in the T11 1 500 m was almost another national record.

Carried by UFS and other support
“One could never be ungrateful when running close to your personal best,” Coetzee said. “Fortunately, with God’s blessing, the support of everybody at home, support from the university, as well as my mom and them, it really was a very blessed and successful event.”

According to her coach, Rufus Botha, Coetzee was not feeling well before the event and had to get medical clearance before the 5 000 m. He told her not to run too hard, even though their goal was 18:20. “She ran an incredible final 600 m, which brought the time down to 18:14,” he said. “It was amazing to watch.”

Botha’s knowledge valuable abroad
He enjoyed going overseas with Coetzee and her guide, Khothatso Mokone, for the first time. “His (Botha’s) experience, knowledge, support, and coaching was extremely valuable,” Coetzee said. “It will definitely help me in future: how to approach things, and everything he shared with us.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept