Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

UFS takes the lead in solar heating in the Free State
2010-06-03

In the “engine room” of the solar heating system of the Vergeet-my-nie Residence with the big hot water tanks in the background. From the left are Mr Anton Calitz, Electrical Engineer of the UFS, and Mr Nico Janse van Renburg, Manager: Physical Planning at the UFS.
Photo: Leatitia Pienaar


The University of the Free State (UFS) took a further step in reducing its carbon footprint and its dependency on coal fired electricity with the installation of a solar heating system at one of its residences. The contractor handed the system over to the UFS on Wednesday, 2 June 2010.

The system installed at the Vergeet-my-nie Residence is the first commercial solar water heating project in both Bloemfontein and at the UFS. It is estimated that it will provide in 70% of the residence’s energy needs and save approximately R101 000 per annum in electricity cost. The project was completed at a cost of R2,4 million.

More residences at the UFS will be refurbished with solar systems as the existing heating systems in the rest of the twenty residences are due for replacement.

The energy crisis of 2008, and the challenges and necessity to reduce the use of electricity, sparked the initiative around the installation of solar heating systems at the UFS. The UFS is the second largest energy user in Bloemfontein.

Mr Nico Janse van Rensburg, Manager: Physical Planning at the UFS, says the management of the UFS saw an opportunity in the crisis and pro-actively embarked to become a market leader. Solar heating would not only alleviate the electricity problem of South Africa, but will impact the ever increasing electricity bill of the UFS.

“Protecting the environment and being on the cutting edge of technology are core issues to the UFS,” says Janse van Rensburg. “We are an educational institution and take pride in practicing what we preach.”

Media Release
Issued by: Lacea Loader
Director: Strategic Communication (acting)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za  
3 June 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept