Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

South Africa praised for dealing with its history
2012-07-12

“I listened to an incredible conversation on how South Africans can talk about the past. We failed to do that in the US. We cannot move on because we failed to name the ghosts in our past. I am honouring what South Africa is doing.”

These are the words of a staff delegate from a university in the USA in a case study at the Global Leadership Summit led by Prof. André Keet, Director of the International Institute for Studies in Race, Reconciliation and Social Justice at the University of the Free State (UFS).

Students and academics from universities in the USA, Belgium, the Netherlands and Japan are attending a Global Leadership Summit with the theme “Transcending Boundaries in Global Change Leadership” at the UFS.

In the case study, symbols on the Bloemfontein Campus such as the MT Steyn Statue, Justitia symbol of justice at the building of the Faculty of Law, the artwork Van hier tot daar, and the Women’s Memorial were presented to the audience and the question was asked if they had to be removed or if they had to remain.

Students overwhelmingly felt that symbols of the past had to remain. Here are some of the comments:

  • “Without our past we would not be here today. Without the past, we would not know why we are here or where we are going.”
  • “It is important for students that it remains on campus, as a reminder that history must not repeat itself.”
  • “There is room for new symbols. We must look back but must also look at the future.”
  • “We must resolve the problems of the past and move on.”
  • “We must remember that we cannot go back there again. We must not take away part of other people’s history.”
  • “Symbols must be contextualised.”
  •  “Don’t look in the rear mirror, but through the windscreen where you are going. The windscreen is far bigger.”

One student said the statute of MT Steyn filled him with anger.

Prof. Keet said the act of running away from the ghosts of the past was a way to keep those ghosts alive. The past cannot be dealt with, only visited. The ghosts connect people with the past and allow the past to be present in the now.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept