Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

“I, too, am an African,” says visiting US drama professor
2013-03-06

 
Africans are of blood and of soil, says Prof Charles Dumas in his inaugural lecture at the UFS. Speaking on the topic I, too, am an African, Prof Dumas reminisced about his life and experiences on the continent.
Photo: Minette Grove
05 March 2013

Lecture (pdf)

What is an African? Is it those born in Africa, defined in racial and genealogical terms, or those who identifies with the continent in nationality and ancestral location? Did the descendants of enslaved Africans in the US, the Caribbean or Brazil lose their Africaness when their ancestors were put on slave ships to the New World?

These were some of the questions raised by Prof Charles Dumas, visiting senior professor in the Department Drama and Theatre Arts, in his inaugural lecture at the university.

Proclaiming attachment to the continent, Prof Dumas told his audience there are two types of Africans: Africans of the blood and Africans of the soil. In a speech titled, “I, too, am an African,” he stated that he lay claim to his ancestral birthright not because of blood relationship to an identifiable ethnic group or birthright to the continent, but because he earned it.

“I suggest another way that one can be an African, is through trial and struggle to be reborn an African in spirit. It is a ritual journey that may be taken by anyone. For, after all, if we are to believe the anthropologists who tell us that human life as we know it began in the Olduvai Gorge, genetically we are all African in origin.”

Prof Dumas, a senior professor at Penn State University in the USA, took the audience on a journey of his experiences on the continent, starting in 1978 when he first came to South Africa as a legal observer. Noticing the changes between Apartheid and today’s South Africa, he said this generation are committed to learn from each other – and that is the most important, he said.

“With their hopes and aspirations they earnestly desire to live in the new South Africa that we promised them. We must support them in their effort. It is time we stored our old baggage in the closet.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept