Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

Physical Planning lives in recaptured space
2014-06-18

When the Department of Physical Planning decided on a new office premises, the team decided to tackle the project with an overarching theme – recycling.

It is important for Physical Planning to not only dictate to other departments on campus, but to set the example themselves,” says Nico Janse van Rensburg, Director: Physical Planning at the UFS. 

Recaptured space

New office space on campus is simply not available. It was therefore decided to recover space and a store room was identified. “Fortunately, the storage area had ceilings. However, it was dilapidated and was sagging all over. To divert attention from the ceiling, we painted it in a dark colour and the walls white.

“All wiring was also done superficially. It draws the attention away from the uneven surfaces and simplifies work on the wiring. Instead of trying to hide it, we made a focal point of it,” says Janse van Rensburg.

Recycled building materials

Lots of the building material that was used to convert the storage space into offices, was recovered from other building projects on campus. Material that would normally be discarded was utilised creatively to not only serve a practical purpose, but also an aesthetic one.

A laboratory basin was used as wash basin. Remaining parts of granite slabs from other sites were utilised as top for the basin. Existing toilets were also reused. To enhance the atmosphere, new taps in an affordable, but durable range were installed.

Recycled furniture

We rambled through every possible store room to find furniture. Tables were simply sanded and varnished and look better than new. Even the cabinet at the entrance was saved from wind and weather and reused.

Hot and smart

Only one screen wall was built. It was left in raw brick, unplastered and unpainted to contribute to contrasting textures. Existing walls were left painted or unpainted as it was before.

“The environment that was created breaks down several existing perceptions. Such as the perception that everything has to match; everything has to be plastered and painted and many others. This is an example of how different materials can be combined to create a lively environment.

“Staff members have already moved into their new offices and are very satisfied,” says Janse van Rensburg. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept