Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

Latest information technology employed to make learning in Disaster Management easy
2014-10-20



Prof Dusan Sakulski
Photo: Leonie Bolleurs
Live, colourful, interactive, real-time-calculated. This is how Prof Dusan Sakulski, researcher and lecturer from the UFS’s Disaster Management Training and Education Centre for Africa (DiMTEC), describes his e-learning platform implemented in this department.

Rather than producing research that gathers dust somewhere in a cabinet, Prof Sakulski believes that research should be used to make life easier, not only for society, but also for his students.
 
This educational civil engineer, who is responsible for information technology implementation in disaster risk management, developed through his research several programs to optimise the three contact sessions DiMTEC students have to attend each year.
 
One of the initiatives implemented by Prof Sakulski and his daughter Teodora, was the recording, editing and compiling of theoretical lessons and making it available to students online. “Students then don’t have the excuse of missing a class. Furthermore, it allows them to rather focus on group work during contact sessions and to discuss problems they encountered with the work,” he says.
 
Students also have access to an early-warning system portal for the prediction of hazards, including droughts, floods, rain and temperature. In the disaster-risk environment, this program is very useful, not only for students, but also for practitioners working with this kind of data on a daily basis. The operational and educational application works in real time – with the click of a mouse students and practitioners have access to information on current weather conditions. Indicators for possible natural disasters are also built into this program. Truly a useful application when you are working in the field of disaster risk management.

Difficult and technical data are presented live, with information that is colourful, interactive, real-time-calculated and audible, thanks to embedded mathematical language. In this way, students can learn, memorise and understand their work better.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept