Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

UFS receives R13,7 Million for Research into Prehistoric Organisms
2007-03-27

Some of the guests attending the launch of the research contract are: Dr Siyabulela Ntutela (Deputy Director: Biotechnology at the Department of Science and Technology), Dr Godfrey Netswera (Manager of Thuthuka and the Support Programme at the National Research Foundation (NRF)), Dr Esta van Heerden (Platform Manager and lecturer at the Department of Microbial, Biochemical and Food Biotechnology at the UFS), Mr Butana Mboniswa (Chief Executive Officer of BioPAD), and Mr Vuyisele Phehani (Portfolio Manager for BioPAD).
Photo: Leonie Bolleurs

The University of the Free State (UFS) has been awarded a massive R13,7 million contract to conduct research into prehistoric micro-organisms which live under extreme conditions, for example in mineshafts.

This is one of the biggest research contracts awarded to the UFS in recent years.

The biotechnology research contract was awarded to the UFS by BioPAD, a South African biotechnology company that brokers partnerships between researchers, entrepreneurs, business, government and other stakeholders to promote innovation and create sustainable biotechnology businesses.

The project is endorsed by the Department of Science and Technology and the National Research Foundation (NRF), which contributes to the bursaries of the 17 postgraduate students on the programme.

The contract involves the establishment of a Platform for Metagenomics -  a technique which allows researchers to extract the DNA from microbes in their natural environment and investigate it in a laboratory. 

“Through this platform we will be able to understand deepmine microbial populations
and their potential application in the search for life in outer space.  It is most likely
that, if life were to be found on other planets in our solar system, it would probably
resemble that which existed millions of years ago on earth.  Apart from all this, these
organisms have unique properties one can exploit in biotechnological application for
South Africa and its community,” said Dr Esta van Heerden, platform manager and
lecturer at the UFS Department of Microbial, Biochemical and Food Biotechnology.
She is assisted by her collegues, Prof. Derek Litthauer and Dr Lizelle Piater.

“The platform aims to tap into the unique genetic material in South African mines
which will lead to the discovery of new genes and their products.  These new and unique products will find application in the medical field (anti-cancer, anti-bacterial en anti-viral cures), the industrial sector (nanotechnology, commercial washing agents and the food industry), environmental sector (pollution management, demolition of harmful metals and other toxic waste),” said Dr Van Heerden.

According to Dr Van Heerden, the Metagenomics Platforms stems from the Life in
Extreme Environments (LExEN) programme which was started in 1994 by Princeton
University in the United States of America (USA) in South African mines with grants
from among others the National Aeronautics and Space Administration (NASA) and
the National Science Foundation (NSF) in the USA.  Other international collaborators
on the project include Geosynec Consultants Inc. (USA), Oak Ridge National
Laboratory (USA), the University of Tennessee (USA) and in South Africa the
Universities of the Witwatersrand, North West and Limpopo and companies like BHP
Billiton, MINTEK and mining companies like Harmony, Gold Fields and AngloGold
Ashanti.

The research field laboratory of the Metagenomics Platform, which was situated in
Glen Harvey, was moved to the Main Campus of the UFS in Bloemfontein.  “In this
way the university has become the central hub for all research programmes.  We are
also the liaison between the LExEN programme and the various mining companies
involved,” said Dr Van Heerden.  The new laboratory was introduced during the
launch of the research contract.

“Our decision to commit BioPAD to this project stems from the company’s commitment to advance human capacity development to strengthen South Africa’s research infrastructure.  It is also part of our aim to create and protect intellectual property,” said Mr Butana Mboniswa, Chief Executive Officer of BioPAD.

Talking on behalf of the UFS senior management, Prof. Teuns Verschoor, Vice-Rector
of Academic Operations, said that the university shares the excitement to be part of
the exploration of unknown forms of life, the discovery of new genes and
their products and in applying newly gained knowledge to better understand our
universe.

Media release
Issued by: Lacea Loader
Assistant Director: Media Liaison 
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za
27 March 2007

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept