Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

Researchers receive study grant for research into Congo Fever
2015-03-10

UFS researchers will be contributing significantly to the search for a vaccine against the deadly tick-borne disease known as Congo Fever.

Prof Felicity Burt from the Department of Medical Microbiology and Virology was recently awarded a research grant by the National Health Laboratory Service (NHLS) to study candidate vaccines for Crimean-Congo heamorrhagic fever (CCHF) virus and other arboviruses.

Arboviruses are viruses transmitted by mosquitoes, ticks, or other arthropods.

Prof Burt is an internationally-recognised expert on the Crimean-Congo haemorrhagic fever (CCHF). The Crimean-Congo haemorrhagic fever (CCHF) virus is a tick-borne virus that is associated with severe haemorrhagic disease in South Africa and other parts of Africa, Asia, and eastern Europe. Her interests focus on medically significant viruses that are transmitted by ticks and mosquitoes. Her research group is involved in determining the immune responses that are induced by different viral proteins.

Crimean-Congo haemorrhagic fever (CCHF) virus, a tick- borne virus found in Africa, Asia, the Balkans, and eastern Europe, causes severe viral haemorrhagic fever outbreaks.

Although a number of tick species are capable of becoming infected with CCHF virus, ticks of the genus Hyalomma, commonly referred to in SA as the “bont-legged ticks”, are the principal vector. The ticks have distinctive brown and white bands on their legs.

In February 1981, the first case of CCHF was recognised in South Africa (SA). To date, there have been nearly 200 cases of CCHF infection in SA with a 20% fatality rate. The majority of cases occurring in SA were in patients from the Northern Cape and Free State provinces.

“The funding that has been awarded will be used to profile immune responses against CCHF viral proteins, and investigate mechanisms and strategies to enhance these immune responses. We hope that the study will contribute knowledge towards the development of a vaccine against this medically significant virus.”

For more information or enquiries contact news@ufs.ac.za.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept