Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

Plant-strengthening agent a result of joint effort between UFS and German company
2015-07-27

Research over the past few years has showed that the agent applied mostly as a foliar spray subsequently leads to better seedlings as well as growth and yield enhancement of various crops.

The application of a plant-strengthening agent in the agricultural industry has, until recently, been largely ignored, says Dr Elmarie van der Watt of the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS). The agent was co-developed by researchers at the UFS and a German company.

The product is moving into new markets, such as China, Vietnam, the USA, and Australia.

ComCat® was the result of extensive research by the German company Agraforum AG. Commercialisation was limited initially to Europe, while research was expanded to other parts of the world, with the University of the Free State as the main research centre.  ComCat® is a unique, non-toxic plant strengthening agent derived from wild plants. It enhances plant growth and yield, as well as resistance against abiotic and biotic stress factors.

Dr Van der Watt says that, in nature, plants communicate and interact by means of allelochemicals (the inherent silent tool of self-protection among plants) and other phytochemicals (chemical compounds that occur naturally in plants), as part of their resistance mechanisms towards biotic and abiotic stress conditions.

Most wild-plant varieties are usually well-adapted to resist these stress factors. However, monoculture crops have lost this ability to a large extent. “Active compounds contained in extracts from wild plants applied to monoculture crops can potentially supply the signal for the latter to activate their dormant resistance mechanisms.” 

Research over the past few years has showed that the agent applied mostly as a foliar spray subsequently leads to better seedlings as well as growth and yield enhancement of various crops.  A major advantage is that, despite its enhancing effects on root development and yield, it does not induce unwanted early vegetative growth that could jeopardise the final yield, as happened in the past for nitrogen application at an early growth stage. 

Dr Van der Watt says, “Physiological data on the effect of the natural bio-stimulant product on photosynthesis, respiration, and resistance towards biotic stress conditions indicate that it can be regarded as a useful tool to manipulate agricultural crops. Research also showed that the field of application for this natural product is never-ending, and new applications are being investigated every day.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept