Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

UFS casts its net wider for collaborative partner engagement
2015-10-19

Ms Felicia Mabuza-Suttle and Mr Ndaba Ntsele

The office of Institutional Advancement at the University of the Free State hosted an event on 9 October 2015 in Johannesburg, to engage prospective partners and donors, to showcase its various projects and programmes, and to recognise existing donors for their contributions.

The event, titled “Revenge of the Caterpillar”, prompted a discussion on the story of change at the University of the Free State, focusing on transformation as well as new ways of advancing a University amidst recent events.

The programme director, Mr Ndaba Ntsele, CEO and Director of Pamodzi Holdings and member of the UFS Council, introduced the Vice-Chancellor and Rector, Prof Jonathan Jansen, to the audience. Mr Ntsele expressed his deep respect and confidence in the Vice-Chancellor and his leadership of the university.

Professor Jansen launched his new book, Leading for Change: Race, intimacy, and leadership on divided university campuses, which offers theoretical grounds for thinking about, and transforming, leadership and higher education worldwide. In the context of his book, Prof Jansen discussed inter-racial relationships among students at the UFS and their experiences, which mirror race relations in the country among communities that have come out of a long history of oppression, such as slavery and apartheid.

Prof Jansen also spoke of the challenges that have surfaced nationally on racial symbols on university campuses. “At the UFS, we have dealt with issues concerning racial symbolism.  It is important to lead in times of peace, in order to be able to lead in times of trouble,” he said.

A robust discussion followed, on the way forward for transformation at institutions of higher education, and how this affects communities and the nation at large.   The event was attended by representatives of donor and affiliate organisations of the UFS, such the Nedbank Group, The South African Holocaust and Genocide Foundation, and celebrity guests such as Gareth Cliff, Felicia Mabuza-Suttle and Leanne Manas.



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept