Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

Clarinet lecturer honoured with prestigious international artistship
2015-11-13

Clarinetist Danré Strydom

Danré Strydom, lecturer in the Odeion School of Music (OSM) of the University at the Free State (UFS) has recently been added to the Buffet Crampon executive list of representative artist. Buffet Crampon is one of the most iconic woodwind brands and the leader in manufacturing first-rate clarinets. The artistship entails a highly competitive selection process to become the first South African Buffet Crampon brand ambassador.

Buffet-Crampon, based in France and Germany, is ailed internationally as the “Steinway” of clarinet manufacturers. The company follows a meticulous selection process, and the title of Buffet Artist is not bestowed lightly. Strydom will be the first South African artists to represent the brand.

For nearly 200 years, musicians have received continuous artistic excellence and a dedication to music from Buffet-Crampon and its instruments. In a dialogue with the most renowned artists, the brand’s ambition is to combine tradition with modernity, know-how with creation, and history with innovation in order to offer excellent wind instruments unique in character, and underpinned by undeniable quality.

Strydom received her formative musical education at the Windhoek Conservatoire, before completing her undergraduate degree at the UFS. Her playing then won her several prestigious scholarships for overseas studies. She began her postgraduate studies at Indiana University’s Jacobs School of Music, and then furthered her studies in Belgium, resulting in two separate Master’s Degrees in Clarinet and in Bass Clarinet Performance from the Royal Conservatory, Ghent University. 

Besides currently serving as principal clarinetist for the Free State Symphony Orchestra and Namibian National Symphony, she was an ad-hoc member of the esteemed Brussels Philharmonic from 2009-2013. The spell with the Brussels Philharmonic included an Academy Award for the soundtrack of the motion picture, “The Artist,” which Strydom considers one of her proudest moments.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept