Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

Wayde Van Niekerk makes sprinting history
2016-03-13

He is the world champion in the 400 m, the South African Sports Star for 2015, and now Kovsie student Wayde van Niekerk has achieved something nobody else has done before.

On 12 March 2016, Van Niekerk became the first athlete in history to run the 100 m under 10 seconds, the 200 m under 20 seconds, and the 400 m under 44 seconds. Van Niekerk achieved this feat, which was confirmed by the IAAF, when he ran a personal best in the 100 m at the Free State Championships in his hometown of Bloemfontein.

His time of 9.98 seconds in the 100 m improved his previous best by 0.47 seconds. Van Niekerk ran his previous best back in 2011 and didn’t compete much in this event during the last couple of years.

“We, as the UFS leadership, are enormously proud of this historic achievement of Wayde, who embodies our values of academic commitment and human decency in every way,” said Prof Jonathan Jansen, Vice-Chancellor and Rector of the University of the Free State (UFS).

He was congratulated by many people on social media over the weekend. AB de Villiers, the Proteas' test and one-day cricket captain, was one of a few well-known people who congratulated Van Niekerk on Twitter.
“@WaydeDreamer don’t know the man, but WOW. Take a bow,” De Villiers tweeted.

A humble Van Niekerk thanked De Villiers and wished him good luck for the upcoming T20 World Cup in India.

The 23-year old Van Niekerk said on his Instagram account that it was a childhood dream to run a sub 10, and expressed his thanks to his supporters.  

On 11 March 2016, Van Niekerk won the 200 m at the Free State Championships in 20.97 seconds. His best in this event is 19.94 seconds.

More articles:

Van Niekerk makes sprinting history in Bloemfontein (IAAF)

UFS community proud of Wayde’s hat trick of awards

Wayde nominated with SA’s best

Wayde one of the Adidas faces for Rio 2016

NBC tells Wayde’s story 

Wayde, Karla crowned as KovsieSport’s best

UFS congratulates Wayde van Niekerk and other students for their national and international

Kovsies Wayde van Niekerk wins gold at the IAAF World Championship

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept