Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

Postgraduate student to conduct research on maize quality at Michigan State University
2017-03-27

Description: Student maze research Tags: Student maze research

Schae-Lee Olckers, master’s student in the
Department of Microbial Biochemical and
Food Biotechnology.
Photo: Supplied

Schae-Lee Olckers, a master’s student in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS), will be travelling to the US in a few weeks’ time. For the next two years she will be doing research at the Michigan State University (MSU) at its Department of Food Science, working on wheat quality and its baking properties.

Increase the nutritional value of maize
The title of her master’s research project is: “The influence of low and optimal nitrogen conditions on the nutritional value of quality protein maize”. She is focusing on the influence of environmental conditions on the nutritional value of maize.

New hybrids of maize production developed

Olckers said: “I chose to start my research on this specific topic in my honours year because maize is the main staple crop in South Africa, as well as in the rest of Africa. Therefore, micronutrient malnutrition is a major concern for developing countries as well as for poor people who rely on it as a major food source. I found it interesting that these breeding programmes that are being developed for new hybrids of maize for production are focusing on increasing the nutritional value of maize and can therefore help eliminate micronutrient malnutrition in some populations of poor communities,” she said.

Prof Perry Ng will be her research supervisor. He is an affiliated professor at UFS in the division of Plant Breeding. “I am very excited about the opportunity to travel and to gain experience working with a well-known cereal scientist. The work he does is also closely associated with my research,” said Olckers.

Her supervisors at UFS are Profs Garry Osthoff and Maryke Labuschagne from the Departments of Microbial Biochemical and Food Biotechnology and Plant Sciences respectively.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept