Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Refilwe Mogale
Dr Refilwe Mogale received her PhD in Chemistry. She is fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity.

“Chemistry chose me,” says Dr Refilwe Mogale, who wanted to enrol for Psychology years ago when she decided to study at the University of the Free State (UFS). 

“On the day of registration, however, as I was standing in the queue, something inside me said this was not the right choice for me. Ultimately, I chose my second option, which was a BSc degree majoring in biology, physics, and chemistry.”

“Once I started the BSc programme, I gravitated towards chemistry, and as difficult as it was juggling classes and six-hour practical sessions, I loved it. I am fascinated by the ability of chemistry and science in general to solve some of the world’s most pressing issues, such as water scarcity, alternative generation, access to antibacterial hygiene products, as well as novel strategies to cure diseases, among many other things.”

The UFS awarded Dr Mogale a PhD in Chemistry on 9 December 2022.

Addressing a global challenge

Being passionate about applied chemistry – where scientific research can be used to create products to address everyday problems – Dr Mogale focused her thesis on Aluminium- and Zirconium-based metal organic frameworks with azobenzene and stilbene dicarboxylate ligands for use in wastewater treatment. 

She has also published multiple articles on topics of environmental chemistry and wastewater management in international journals. 

Dr Mogale is of the opinion that water pollution by financially lucrative industries and access to clean drinkable water is one of our planet’s most challenging environmental and health issues. “The waste generated by some of the industries that contribute heavily to our country’s economy, such as the textile, agricultural, and medical industries, may end up in the limited drinking water resources we have. I chose my research topic because I wanted to positively contribute to this global challenge,” she says.

“My research was based on making highly porous metal-organic frameworks (MOF) to be used in the wastewater treatment technique called adsorption,” explains Dr Mogale, describing MOFs as “really cool three-dimensional ‘sponges’ that can suck up very high amounts of gases and pollutants, trapping them in their pores. These trapped materials can later be released from the pores to be re-used when MOFs are exposed to certain stimuli.”

She continues, “Low cost and simplicity make this method attractive for industrial use. Considering our current energy crisis, other methods are not ideal, since they require large amounts of energy.” 

Focused on developing highly effective adsorbent for wastewater purification systems, Dr Mogale synthesised a novel MOF with one of the highest adsorption capacities compared to existing counterparts.

According to her, should MOFs with their incredibly high surface areas – which allow them to absorb more waste than their existing counterparts – be implemented in wastewater purification systems, they would be able to address the environmental issue of water pollution and the health issue of access to drinkable water.

Tackling everyday societal issues

She is currently doing a postdoctoral fellowship in the UFS Department of Chemistry – to broaden her knowledge in chemistry beyond MOFs. Her plans are, however, to transition to industry and ultimately entrepreneurship, where she will be able to develop scientific products that can tackle everyday societal issues. 

Dr Mogale dreams of adding value to society by practically contributing to the water crisis issue through the development of low-cost water generation and purification products.

News Archive

Two Kovsies in Baby Boks group for U20 Championship
2017-05-12

Description: ' 000 Baby Boks Tags: Baby Boks 2017

Scrumhalf Rewan Kruger, left, and prop Kwenzo Blose, both
rugby players from the University of the Free State, will
soon be playing in their first and second Junior World
Tournament respectively.
Photo: SA Rugby

Although he will soon be playing in his first Junior World Cup, Rewan Kruger believes his experience of international rugby will help him succeed. Last year, the scrumhalf was part of the South African schools team playing in the U19 series against Italy, Wales, England, and France.
Kruger and prop Kwenzo Blose, who will be playing in his second World Tournament, are two players from the University of the Free State that were recently included in the final Baby Boks group of 28. The World Rugby U20 Championship will take place in Tbilisi, Georgia from 31 May to 18 June.

A taste of international rugby

The 19-year-old Kruger says it is hard to describe how thrilled he is about his inclusion. “The whole group of players were gathered in a room and the next moment the coach [Chean Roux] played a video on his computer, announcing the team that will be playing abroad.”
The former Grey College, Bloemfontein, pupil has already had a taste of international rugby. “I believe the experience I gained in the international U19 series will help me a lot in the upcoming U20 World Rugby Championship. I already have an idea of the pace of an international game.”

Team can improve on previous year

Blose, KovsieSport’s Junior Sportsman for 2016, says the South African U20 team could do better than the fourth place they got in Manchester, England in 2016. “South Africa is a strong rugby nation and we have set high standards for ourselves. Therefore, we will do our best to win the tournament. We have a great group and I believe we have the potential to win the trophy.”
The former lock from Glenwood High School, Durban, says it has helped his team to play practice matches against senior teams such as the Griquas. “The preparation was tough and I think it will benefit the team.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept