Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2022 | Story Lacea Loader | Photo Supplied
Prof Mogomme Masoga
Prof Mogomme Masoga, newly appointed Dean: Faculty of the Humanities.

The Council of the University of the Free State (UFS) approved the appointment of Prof Mogomme Masoga as Dean of the Faculty of the Humanities for a five-year term during its quarterly meeting on 25 November 2022. 

He is currently the Dean of the Faculty of Humanities and Social Sciences at the University of Zululand. 

“Prof Masoga has extensive and an impressive national and international research standing, established networks and partnerships, and substantive management experience. He is a visionary leader and a renowned scholar and will be able to lead and manage the faculty at academic, research, engaged scholarship, and community-service level,” says Prof Francis Petersen, UFS Rector and Vice-Chancellor. 

Prof Masoga holds a PhD in Philosophy from the University of the Free State. He began his academic career with a Bachelor of Arts from the University of KwaZulu-Natal, where he proceeded to complete two honours and a master’s degree. He received a second Master of Arts in Musicology from the University of South Africa.

Prof Masoga has an excellent record of research publication within the broad niche area of Oral History, Africanism, and Indigenous Knowledge System Studies. He has developed a well-grounded sense of autonomy and involvement, as he has been able to establish a number of research projects and has produced single and co-authored articles. He was able to synergise and sustain his research niche on Africanism and Indigenous Knowledge Studies, which has informed his research over the years. 

He has maintained a coherent research trajectory as a recognised NRF-rated scholar in Indigenous Knowledge System Studies. Prof Masoga’s participation in international collaborative projects has had a positive impact on his scholarly growth, as well as on other colleagues and departments in his faculty at the University of Zululand. 

“Prof Masoga will be able to sustain his existing networks and build new ones that will support research and postgraduate studies at the UFS. This will be particularly valuable in support of the university’s Vision 130, which expresses the institution’s strategic intent to position itself in the period leading up to 2034 when the university will be 130 years old. Vision 130 furthermore exemplifies our commitment to be acknowledged by our peers and society as a top-tier university in South Africa, ranked among the best in the world,” says Prof Petersen. 

Prof Masoga will assume duty on 1 March 2023.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept