Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 December 2022 | Story Lacea Loader | Photo iFLAIR Photography

During its meeting on 25 November 2022, the Council of the University of the Free State (UFS) unanimously approved the name changes of five residences on the Bloemfontein Campus. 

The UFS Institutional Transformation Plan (ITP) states that a transformed university in South Africa will be one that strives for social justice in everything it does. It will be an institution where its diverse people feel a sense of common purpose and where the symbols and spaces, systems and daily practices all reflect a commitment to openness and engagement. 

“It is in this context that the names and symbols of all 36 residences on the Bloemfontein Campus have been reviewed to ensure that the institutional culture and spaces contribute to an inclusive sense of belonging. The process was started in 2021 through the university’s Naming Committee,” said Prof Francis Petersen, UFS Rector and Vice-Chancellor. 

Subsequently, a process was launched for the review and adjustment of the names of several residences on campus. The recommended name changes express the university’s commitment to courageously grapple with its shared past, present, and future. They are informed by the (2020) Naming and Renaming Policy, which “recognises that the names bestowed on its assets must sustain a harmonious balance between descriptive functions, the university’s origins, the rich history and heritage of the UFS, and the constitutionally democratic society it is designed to serve”. 

As such, the following name changes were approved by the UFS Council:

“The renaming process of the five residences included a variety of activities, all of which focused on building and implementing an engagement and consultation process with the various stakeholders and role player communities,” said Prof Petersen. 

During the renaming process, an important approach of the Naming Committee was to balance the social justice and multilingual agenda of the UFS. Therefore, the languages used in the renaming process reflect not only some of the languages spoken at the UFS (i.e., English, Sesotho, Afrikaans, and isiZulu), but also languages such as isiXhosa, Kiswahili and the use of a name that draws on the national motto in ways that recognise the Khoisan heritage of the Free State and South Africa. 

“The renaming process is an important milestone for the UFS as it symbolises and celebrates the courage and vision of the university community for its commitment to transformation and for participating in a process which aims at producing a names and symbols environment in which all can experience belonging,” said Prof Petersen. 

During the Council meeting, the Naming Committee was thanked for the work done and for the balanced approach to the process of renaming the residences. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept