Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 February 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Chané Enslin, master’s student in the UFS Centre for Environmental Management (CEM); Stephanie Graumnitz, Institute of Hydrobiology at the Technical University Dresden (TUD); Dr Dirk Jungmann, Head of Ecotoxicology and Biomonitoring in the Institute of Hydrobiology at TUD; Sihle Mlonyeni, master’s student in the Faculty of Applied Science at the Cape Peninsula Technical University; Dr Marinda Avenant, Senior Lecturer in the CEM at the UFS; Akani Baloyi, master’s student in the UFS Disaster Management Training and Education Centre for Africa; and Sphindile Dlamini, master’s student in the Department of Zoology and Entomology on the UFS Qwaqwa Campus.


The Centre for Environmental Management (CEM) at the University of the Free State (UFS), in collaboration with Dr Dirk Jungmann from the Technical University Dresden, recently presented a virtual summer school on Blackboard, titled: Monitoring of surface water quality: General framework, tools and implementing disaster management aspects in urban areas. 

The international group of 30 persons who attended the summer school mostly comprised postgraduate students and employees from, among others, the UFS and other tertiary institutions such as the Technical University Dresden (TUD), the Cape Peninsula University of Technology (CPUT), UNISA, the University of the Western Cape, Stellenbosch University, the University of Lesotho, and the University of Zimbabwe. Members of the Council for Scientific and Industrial Research also attended the summer school.

Experts present

Dr Marinda Avenant, Senior Lecturer in the CEM, believes the summer school provides students with a wonderful opportunity to be exposed to a topic, such as aquatic biomonitoring, over and above their normal postgraduate studies. “The presenters are all experts in their field and come from a range of disciplines (from hydrology and chemistry to the social aspects of water), as well as from different countries and perspectives,” she adds. 

Some interesting topics covered during the summer school included a panel discussion on water management challenges in Southern Africa. Head of CEM, Prof Paul Oberholser, participated in this live discourse. In 2021, he won the NSTF-Water Research Commission (WRC) Award for his contribution to water resource management in SA over the past five years.

Also contributing a perspective on surface water quality was affiliated professor in CEM, Prof Anthony Turton, who delivered the keynote address on Managing surface water quality as an element of disaster management in urban areas.

Dr Alice Ncube from the UFS Disaster Management Training and Education Centre (DiMTEC) presented on women and disasters (including a case study on a stokvel in Botshabelo), and Dr Inga Jacobs-Mata from the International Water Management Institute (IWMI) provided a social perspective on the water resources sector. 

Students excel 

Five master’s students representing the UFS, the Technical University Dresden (TUD), as well as the Cape Peninsula University of Technology (CPUT), assisted with the organisation of the summer school. The Volkswagen Foundation in Germany, which funded a first summer school in 2019, provided funding that was used to appoint the five students.

According to Dr Avenant, they made provision for the appointment of these students in their project proposal to the Volkswagen Foundation. “The students played a key role in the planning of the virtual summer school; they specially came up with ideas to make the virtual sessions more interesting,” she says.

Among others, they managed the technical aspects of the sessions, introduced the speakers, arranged social activities for the virtual platform, and they produced podcasts. The podcasts of the speakers were distributed to the participants over the extent of two months, in order to learn more about the presenters. 

“We were really impressed with the work of the students, who are all from the natural sciences,” says Dr Avenant.

News Archive

Eye tracker device a first in Africa
2013-07-31

 

 31 July 2013

Keeping an eye on empowerment

"If we can see what you see, we can think what you think."

Eye-tracking used to be one of those fabulous science-fiction inventions, along with Superman-like bionic ability. Could you really use the movement of your eyes to read people's minds? Or drive your car? Or transfix your enemy with a laser-beam?

Well, actually, yes, you can (apart, perhaps, from the laser beam… ). An eye tracker is not something from science fiction; it actually exists, and is widely used around the world for a number of purposes.

Simply put, an eye tracker is a device for measuring eye positions and eye movement. Its most obvious use is in marketing, to find out what people are looking at (when they see an advertisement, for instance, or when they are wandering along a supermarket aisle). The eye tracker measures where people look first, what attracts their attention, and what they look at the longest. It is used extensively in developed countries to predict consumer behaviour, based on what – literally – catches the eye.

On a more serious level, psychologists, therapists and educators can also use this device for a number of applications, such as analysis and education. And – most excitingly – eye tracking can be used by disabled people to use a computer and thereby operate a number of devices and machines. Impaired or disabled people can use eye tracking to get a whole new lease on life.

In South Africa and other developing countries, however, eye tracking is not widely used. Even though off-the-shelf webcams and open-source software can be obtained extremely cheaply, they are complex to use and the quality cannot be guaranteed. Specialist high-quality eye-tracking devices have to be imported, and they are extremely expensive – or rather – they used to be. Not anymore.

The Department of Computer Science and Informatics (CSI) at the University of the Free State has succeeded in developing a high-quality eye tracker at a fraction of the cost of the imported devices. Along with the hardware, the department has also developed specialised software for a number of applications. These would be useful for graphic designers, marketers, analysts, cognitive psychologists, language specialists, ophthalmologists, radiographers, occupational and speech therapists, and people with disabilities. In the not-too-distant future, even fleet owners and drivers would be able to use this technology.

"The research team at CSI has many years of eye-tracking experience," says team leader Prof Pieter Blignaut, "both with the technical aspect as well as the practical aspect. We also provide a multi-dimensional service to clients that includes the equipment, training and support. We even provide feedback to users.

"We have a basic desktop model available that can be used for research, and can be adapted so that people can interact with a computer. It will be possible in future to design a device that would be able to operate a wheelchair. We are working on a model incorporated into a pair of glasses which will provide gaze analysis for people in their natural surroundings, for instance when driving a vehicle.

"Up till now, the imported models have been too expensive," he continues. "But with our system, the technology is now within reach for anyone who needs it. This could lead to economic expansion and job creation."

The University of the Free State is the first manufacturer of eye-tracking devices in Africa, and Blignaut hopes that the project will contribute to nation-building and empowerment.

"The biggest advantage is that we now have a local manufacturer providing a quality product with local training and support."

In an eye-tracking device, a tiny infra-red light shines on the eye and causes a reflection which is picked up by a high-resolution camera. Every eye movement causes a change in the reflection, which is then mapped. Infra-red light is not harmful to the eye and is not even noticed. Eye movement is then completely natural.

Based on eye movements, a researcher can study cognitive patterns, driver behaviour, attention spans, even thinking patterns. A disabled person could use their eye-movements to interact with a computer, with future technology (still in development) that would enable that computer to control a wheelchair or operate machinery.

The UFS recently initiated the foundation of an eye-tracking interest group for South Africa (ETSA) and sponsor a biennial-eye tracking conference. Their website can be found at www.eyetrackingsa.co.za.

“Eye tracking is an amazing tool for empowerment and development in Africa, “ says Blignaut, “but it is not used as much as it should be, because it is seen as too expensive. We are trying to bring this technology within the reach of anyone and everyone who needs it.”

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cell: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept