Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 February 2022 | Story Lacea Loader | Photo Sonia Small
Nico Janse van Rensburg
Nico Janse van Rensburg, Senior Director: University Estates, and recipient of the UFS Council Medal.

At a meeting held on 26 November 2021, the Council of the University of the Free State (UFS) approved the awarding of the UFS Council Medal for outstanding service to Nico Janse van Rensburg, Senior Director: University Estates.

 

Building our campuses

Janse van Rensburg completed a BSc Quantity Surveying degree at the UFS in 1989 before joining the institution’s then Department of Physical Planning in 2004, after an impressive career as quantity surveyor. In 2012, he was appointed Senior Director: University Estates, continuously adding value to the infrastructure of our three campuses – totalling more than 500 000 m2 – as well as experimental farms and off-campus entities of more than 1 000 ha.

He has a persistent green approach that not only reduces the UFS’ carbon footprint, but also saves the institution millions of rands in energy savings and maintenance. Indigenous and waterwise gardens greet staff, students, and visitors to all our campuses, while being housed in well-maintained buildings. All newly built facilities on our campuses are based on green building principles, while an overall optimal building management system ensures efficient energy management.

 

Mentorship and skills transfer

University Estates, through its procurement management and the leadership of Janse van Rensburg, is also one of the main drivers behind the UFS’ BBBEE scorecard. He initiated a mentoring and skills transfer strategy by means of joint project appointments, enabling previously disadvantaged firms to eventually be appointed independently for similar projects.

To ensure, among others, aesthetically pleasing buildings that offer value for money, Janse van Rensburg and his team have developed a series of technical manuals that outline material specifications and expectations. Since 2012, he has been instrumental in more than 1 000 projects at the UFS.

The university recognises and commends Janse van Rensburg’s indispensable contribution to creating inclusive and quality spaces on our campuses, where staff, students, and visitors can experience our culture of care. His motto is clearly visible in all the projects he completes: Get things done – within time, budget, quality standards, expectations, and user satisfaction.

“It is an immense privilege to be leading the University Estates team, and I am humbled to be the recipient of this prestigious medal. University Estates is all about teamwork, and an award such as this can only be possible through the commitment, dedication, and support of a very capable team, as well as colleagues throughout the UFS. I would also like to thank our very capable leaders, such as Prof Prakash Naidoo, Vice-Rector: Operations, for his support and guidance. I have learnt a lot on this journey and a lot remains to be learnt. All of this could only be achieved with help that goes beyond one’s own strengths and abilities,” said Janse van Rensburg.”

 

Get things done – within time, budget, quality standards, expectations, and user satisfaction.

The Council Medal will be presented to Janse van Rensburg during a graduation ceremony in 2022.


 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept