Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 February 2022 | Story Lacea Loader | Photo Sonia Small
Nico Janse van Rensburg
Nico Janse van Rensburg, Senior Director: University Estates, and recipient of the UFS Council Medal.

At a meeting held on 26 November 2021, the Council of the University of the Free State (UFS) approved the awarding of the UFS Council Medal for outstanding service to Nico Janse van Rensburg, Senior Director: University Estates.

 

Building our campuses

Janse van Rensburg completed a BSc Quantity Surveying degree at the UFS in 1989 before joining the institution’s then Department of Physical Planning in 2004, after an impressive career as quantity surveyor. In 2012, he was appointed Senior Director: University Estates, continuously adding value to the infrastructure of our three campuses – totalling more than 500 000 m2 – as well as experimental farms and off-campus entities of more than 1 000 ha.

He has a persistent green approach that not only reduces the UFS’ carbon footprint, but also saves the institution millions of rands in energy savings and maintenance. Indigenous and waterwise gardens greet staff, students, and visitors to all our campuses, while being housed in well-maintained buildings. All newly built facilities on our campuses are based on green building principles, while an overall optimal building management system ensures efficient energy management.

 

Mentorship and skills transfer

University Estates, through its procurement management and the leadership of Janse van Rensburg, is also one of the main drivers behind the UFS’ BBBEE scorecard. He initiated a mentoring and skills transfer strategy by means of joint project appointments, enabling previously disadvantaged firms to eventually be appointed independently for similar projects.

To ensure, among others, aesthetically pleasing buildings that offer value for money, Janse van Rensburg and his team have developed a series of technical manuals that outline material specifications and expectations. Since 2012, he has been instrumental in more than 1 000 projects at the UFS.

The university recognises and commends Janse van Rensburg’s indispensable contribution to creating inclusive and quality spaces on our campuses, where staff, students, and visitors can experience our culture of care. His motto is clearly visible in all the projects he completes: Get things done – within time, budget, quality standards, expectations, and user satisfaction.

“It is an immense privilege to be leading the University Estates team, and I am humbled to be the recipient of this prestigious medal. University Estates is all about teamwork, and an award such as this can only be possible through the commitment, dedication, and support of a very capable team, as well as colleagues throughout the UFS. I would also like to thank our very capable leaders, such as Prof Prakash Naidoo, Vice-Rector: Operations, for his support and guidance. I have learnt a lot on this journey and a lot remains to be learnt. All of this could only be achieved with help that goes beyond one’s own strengths and abilities,” said Janse van Rensburg.”

 

Get things done – within time, budget, quality standards, expectations, and user satisfaction.

The Council Medal will be presented to Janse van Rensburg during a graduation ceremony in 2022.


 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept