Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 February 2022 | Story Lacea Loader | Photo Sonia Small
Nico Janse van Rensburg
Nico Janse van Rensburg, Senior Director: University Estates, and recipient of the UFS Council Medal.

At a meeting held on 26 November 2021, the Council of the University of the Free State (UFS) approved the awarding of the UFS Council Medal for outstanding service to Nico Janse van Rensburg, Senior Director: University Estates.

 

Building our campuses

Janse van Rensburg completed a BSc Quantity Surveying degree at the UFS in 1989 before joining the institution’s then Department of Physical Planning in 2004, after an impressive career as quantity surveyor. In 2012, he was appointed Senior Director: University Estates, continuously adding value to the infrastructure of our three campuses – totalling more than 500 000 m2 – as well as experimental farms and off-campus entities of more than 1 000 ha.

He has a persistent green approach that not only reduces the UFS’ carbon footprint, but also saves the institution millions of rands in energy savings and maintenance. Indigenous and waterwise gardens greet staff, students, and visitors to all our campuses, while being housed in well-maintained buildings. All newly built facilities on our campuses are based on green building principles, while an overall optimal building management system ensures efficient energy management.

 

Mentorship and skills transfer

University Estates, through its procurement management and the leadership of Janse van Rensburg, is also one of the main drivers behind the UFS’ BBBEE scorecard. He initiated a mentoring and skills transfer strategy by means of joint project appointments, enabling previously disadvantaged firms to eventually be appointed independently for similar projects.

To ensure, among others, aesthetically pleasing buildings that offer value for money, Janse van Rensburg and his team have developed a series of technical manuals that outline material specifications and expectations. Since 2012, he has been instrumental in more than 1 000 projects at the UFS.

The university recognises and commends Janse van Rensburg’s indispensable contribution to creating inclusive and quality spaces on our campuses, where staff, students, and visitors can experience our culture of care. His motto is clearly visible in all the projects he completes: Get things done – within time, budget, quality standards, expectations, and user satisfaction.

“It is an immense privilege to be leading the University Estates team, and I am humbled to be the recipient of this prestigious medal. University Estates is all about teamwork, and an award such as this can only be possible through the commitment, dedication, and support of a very capable team, as well as colleagues throughout the UFS. I would also like to thank our very capable leaders, such as Prof Prakash Naidoo, Vice-Rector: Operations, for his support and guidance. I have learnt a lot on this journey and a lot remains to be learnt. All of this could only be achieved with help that goes beyond one’s own strengths and abilities,” said Janse van Rensburg.”

 

Get things done – within time, budget, quality standards, expectations, and user satisfaction.

The Council Medal will be presented to Janse van Rensburg during a graduation ceremony in 2022.


 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept