Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 January 2022 | Story Rulanzen Martin | Photo Charl Devenish
The Free State once again excelled in the NSC matric results. Pictured here is a broadcast of a celebratory event held by the FSDoE on the UFS South Campus in 2021 for the matric class of 2020.

The Free State has claimed the top spot in the National Senior Certificate (NSC) examination results for the third consecutive year, with a pass rate of 85,7% in 2021. 

“On behalf of the executive management, staff, and students of the University of the Free State (UFS), I would like to extend our warmest congratulations to you and your executive team on the Free State being the top-achieving province,” Prof Francis Petersen, UFS Rector and Vice-Chancellor, wrote in a congratulatory letter to Dr Tate Makgoe, MEC for Education in the Free State. 

“The UFS is proud to be associated with the Free State Department of Education and we salute you and your team for the many initiatives in schools across the province, which have contributed to the outstanding matric results this year,” Prof Petersen said. 

The UFS will welcome several first-year students on its three campuses in February – many of whom hail from schools in the Free State. The 2021 NSC results were released on 20 January 2022. 
 
Several UFS-led interventions thrive to make impactful change 

The UFS is leading several projects with the Department of Education to address education-related problems in the province. The UFS, through its South Campus, presents the In-Service (InSET) programme, the Internet Broadcast Project (IBP), and the Schools Partnership Project. “It is projects such as these that make a huge difference in the lives of many learners and teachers in our province and that have given so many schools the opportunity to rise to the occasion,” Prof Petersen said. 

The IBP supports learners from 80 schools, with lessons for learners in Grades 8 to 12 being transmitted to three centres across the Free State on a daily basis. Electronic access to learning material is also made possible through the IBP. The Schools Partnership Project, as part of the Social Responsibility Project at the UFS, is focused on the efficacy and quality of school management, subject teaching, and learning development. Well-trained mentors visit project schools on a daily basis, sharing knowledge, materials, and demonstrating the use of technology in an effort to improve the standard of teaching. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept