Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 January 2022 | Story Rulanzen Martin | Photo Charl Devenish
The Free State once again excelled in the NSC matric results. Pictured here is a broadcast of a celebratory event held by the FSDoE on the UFS South Campus in 2021 for the matric class of 2020.

The Free State has claimed the top spot in the National Senior Certificate (NSC) examination results for the third consecutive year, with a pass rate of 85,7% in 2021. 

“On behalf of the executive management, staff, and students of the University of the Free State (UFS), I would like to extend our warmest congratulations to you and your executive team on the Free State being the top-achieving province,” Prof Francis Petersen, UFS Rector and Vice-Chancellor, wrote in a congratulatory letter to Dr Tate Makgoe, MEC for Education in the Free State. 

“The UFS is proud to be associated with the Free State Department of Education and we salute you and your team for the many initiatives in schools across the province, which have contributed to the outstanding matric results this year,” Prof Petersen said. 

The UFS will welcome several first-year students on its three campuses in February – many of whom hail from schools in the Free State. The 2021 NSC results were released on 20 January 2022. 
 
Several UFS-led interventions thrive to make impactful change 

The UFS is leading several projects with the Department of Education to address education-related problems in the province. The UFS, through its South Campus, presents the In-Service (InSET) programme, the Internet Broadcast Project (IBP), and the Schools Partnership Project. “It is projects such as these that make a huge difference in the lives of many learners and teachers in our province and that have given so many schools the opportunity to rise to the occasion,” Prof Petersen said. 

The IBP supports learners from 80 schools, with lessons for learners in Grades 8 to 12 being transmitted to three centres across the Free State on a daily basis. Electronic access to learning material is also made possible through the IBP. The Schools Partnership Project, as part of the Social Responsibility Project at the UFS, is focused on the efficacy and quality of school management, subject teaching, and learning development. Well-trained mentors visit project schools on a daily basis, sharing knowledge, materials, and demonstrating the use of technology in an effort to improve the standard of teaching. 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept