Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 January 2022 | Story Rulanzen Martin | Photo Charl Devenish
The Free State once again excelled in the NSC matric results. Pictured here is a broadcast of a celebratory event held by the FSDoE on the UFS South Campus in 2021 for the matric class of 2020.

The Free State has claimed the top spot in the National Senior Certificate (NSC) examination results for the third consecutive year, with a pass rate of 85,7% in 2021. 

“On behalf of the executive management, staff, and students of the University of the Free State (UFS), I would like to extend our warmest congratulations to you and your executive team on the Free State being the top-achieving province,” Prof Francis Petersen, UFS Rector and Vice-Chancellor, wrote in a congratulatory letter to Dr Tate Makgoe, MEC for Education in the Free State. 

“The UFS is proud to be associated with the Free State Department of Education and we salute you and your team for the many initiatives in schools across the province, which have contributed to the outstanding matric results this year,” Prof Petersen said. 

The UFS will welcome several first-year students on its three campuses in February – many of whom hail from schools in the Free State. The 2021 NSC results were released on 20 January 2022. 
 
Several UFS-led interventions thrive to make impactful change 

The UFS is leading several projects with the Department of Education to address education-related problems in the province. The UFS, through its South Campus, presents the In-Service (InSET) programme, the Internet Broadcast Project (IBP), and the Schools Partnership Project. “It is projects such as these that make a huge difference in the lives of many learners and teachers in our province and that have given so many schools the opportunity to rise to the occasion,” Prof Petersen said. 

The IBP supports learners from 80 schools, with lessons for learners in Grades 8 to 12 being transmitted to three centres across the Free State on a daily basis. Electronic access to learning material is also made possible through the IBP. The Schools Partnership Project, as part of the Social Responsibility Project at the UFS, is focused on the efficacy and quality of school management, subject teaching, and learning development. Well-trained mentors visit project schools on a daily basis, sharing knowledge, materials, and demonstrating the use of technology in an effort to improve the standard of teaching. 

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept