Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 January 2022 | Story Elsabé Brits
Dr Monique De Milander
Dr Monique de Milander, Lecturer in Exercise and Sport Sciences at the UFS, is leading research on attention-deficit hyperactivity disorder (ADHD) and visual and motor control difficulties.

Research done by the University of the Free State (UFS) has shown that Grade 1 learners not only experience visual problems, but also developmental coordination disorder. Teachers and parents can help to identify this.

In the first study published in the South African Journal of Child Health (https://doi.org/10.7196/SAJCH.2021.v15i1.1705), Dr Monique de Milander, Lecturer in Exercise and Sport Sciences at the UFS, led research on attention-deficit hyperactivity disorder (ADHD) and visual and motor control difficulties.

“Visual problems are often overlooked and are seen as a hidden disability. Thus, children are labelled as ADD/ADHD, but in fact, they have learning-related visual problems. Our eyes connect the world with the brain, and we receive 80-90% of information from our eyes. Consequently, visual problems lead to poor vision, and these visual problems will interfere with children’s ability to learn in the classroom,” she explains.

During the study, ADHD symptoms were found to be significantly associated with half of the visual functioning difficulties. These skills include fixation – the ability to fixate on a stationary object with both eyes – in addition to fixating with the eyes independently.

Ocular alignment of the right eye was indicated as a problem – the ability of the two eyes to work together in order to view an object clearly. Therefore, the eyes must move in a coordinated manner. Visual tracking was the skill that the children struggled with the most in both screening tests; thus, to follow a moving object. This was found for both eyes – the right eye on an X shape, and the left eye on a circle.

She added that science suggests that although children at the age of five or six can perform a variety of manipulative skills such as catching, throwing, kicking, and hitting, the manipulative skills that require visual tracking or the ability to intercept moving objects, develop somewhat later (eight years) due to the sophisticated visual-motor requirements.

Furthermore, although maturation plays a role in achieving these skills, children need opportunities to practise the skills in a variety of settings. Parents and teachers should encourage children to take part in physical activities and sports, in addition to proper instruction on how to perform the manipulative skills.

How will these visual difficulties be identified?

It is important to note that children can fixate, visually pursue objects, and reach accurate decisions about the size and shape of an object; however, some refining still has to take place. In other words, the perceptual abilities of the young child are not yet complete. Some examples of visual perception problems in a young child, as indicated by perceptual motor skills involving the eyes, are as follows:

1. Using control to intercept a ball
2. Interchanging letters and numbers
3. Poor perception of moving objects
4. Poor figure-ground perceptual abilities
5. Distance perception
6. Anticipating timing

What is the next step after identifying visual difficulties?

The first aspect to take into consideration is the age of the child, since we now know that their perceptual abilities need to be refined. If the problem continues, screening tests can be done. If the child is at risk, it is recommended that the parent see an optometrist who specialises in visual problems.

How does one assist a child with ADHD in the classroom?

Five tips for teaching students with ADHD:
1. Change activities frequently to accommodate short attention span
2. Use a positive behaviour modification programme to keep student focused on task
3. Incorporate 3-5 min of conscious relaxation at the end of the physical education period
4. Give brief instructions
5. Use activities that promote cooperation among all students

In another study led by Dr De Milander and published in the South African Journal of Childhood Education (https://sajce.co.za/index.php/sajce/article/view/930), the early identification of learners with developmental coordination disorder was researched.

In children experiencing poor motor skills (fine and gross motor coordination difficulties), without evidence of a neurological disorder and which cannot be linked to a general medical difficulty such as cerebral palsy or a pervasive development disorder, the low motor skills are significant – to such an extent that it interferes with their social competence, academic performance, and physical development, leading to problems with completing daily activities, Dr De Milander explains.

The characteristics of developmental coordination disorder are:

• Experiencing problems getting dressed and tying shoelaces
• Finding it difficult to run, skip, or jump
• Experiencing problems with visual perception
• Poor pencil grip
• Slow and hesitant movement
• Poor spatial concepts about in front, behind, next to, below, and above
• Unable to catch or kick a ball
• Finding it difficult to work in group context

She gives the following advice: Children should be motivated and challenged to participate in simple, yet enjoyable and relaxing physical activities. The focus should be on the child's strengths and not his/her weaknesses. Allow the child to play regularly in sandboxes and with clay. Improve the child’s ball skills by catching and throwing. Motor skills must be learnt through simple mastery steps. Improve the child's movement skills and make participation in movement activities enjoyable and challenging. Concentrate on reaction skills and play in which the child can participate. In extreme cases, specialised treatment by an occupational therapist and a kinderkineticist is important.

It is important to know that children do not outgrow these disorders as previously believed; therefore, many children still experience these difficulties as adolescents. Thus, if your child is experiencing any problems, take cognisance of the problem and address it as soon as possible. Professionals such as kinderkineticists are available in private practice and at various schools to assist your child in improving a variety of deviations. The kinderkineticist can evaluate your child through a standardised test to determine the problem, and then suggest an intervention to address the specific problem, as well as to prevent secondary problems such as low self-esteem, physical inactivity, overweight and obesity, etc., which are associated with these disorders.

For help, visit the website of the South African Professional Institute for Kinderkinetics where you will be able to find a kinderkineticist in your area.

Kinderkinetics is a profession aimed at promoting and optimising the neuromotor development of young children (0-13 years) through science-based physical activity.  All programmes within this profession have a preventative, stimulating, developing, and rehabilitative nature. In summary, it has the following goals:

• Promoting functional growth and proper motor development in young children.
• Focusing on certain movement activities to promote/facilitate sport-specific skills.
• Implementing appropriate rehabilitation programmes for children with growth and/or developmental disabilities in order to maintain an active, healthy lifestyle.


News Archive

Water research aids decision making on national level
2015-05-25

Photo: Leonie Bolleurs

With water being a valuable and scarce resource in the central regions of South Africa, it is no wonder that the UFS has large interdisciplinary research projects focusing on the conservation of water, as well as the sustainable use of this essential element.

The hydropedology research of Prof Pieter le Roux from the Department of Soil, Crop and Climate Sciences and his team at the UFS focuses on Blue water. Blue water is of critical importance to global health as it is cleared by the soil and stored underground for slow release in marshes, rivers, and deep groundwater. The release of this water bridges the droughts between showers and rain seasons and can stretch over several months and even years. The principles established by Prof Le Roux, now finds application in ecohydrology, urban hydrology, forestry hydrology, and hydrological modelling.

The Department of Agricultural Economics is busy with three research projects for the Water Research Commission of South Africa, with an estimated total budget of R7 million. Prof Henry Jordaan from this department is conducting research on the water footprint of selected field and forage crops, and the food products derived from these crops. The aim is to assess the impact of producing the food products on the scarce freshwater resource to inform policy makers, water managers and water users towards the sustainable use of freshwater for food production.

With his research, Prof Bennie Grové, also from this department, focuses on economically optimising water and electricity use in irrigated agriculture. The first project aims to optimise the adoption of technology for irrigation practices and irrigation system should water allocations to farmers were to be decreased in a catchment because of insufficient freshwater supplies to meet the increasing demand due to the requirements of population growth, economic development and the environment.

In another project, Prof Grové aims to economically evaluate alternative electricity management strategies such as optimally designed irrigation systems and the adoption of new technology to mitigate the substantial increase in electricity costs that puts the profitability of irrigation farming under severe pressure.

Marinda Avenant and her team in the Centre for Environmental Management (CEM), has been involved in the biomonitoring of the Free State rivers, including the Caledon, Modder Riet and part of the Orange River, since 1999. Researchers from the CEM regularly measures the present state of the water quality, algae, riparian vegetation, macro-invertebrates and fish communities in these rivers in order to detect degradation in ecosystem integrity (health).

The CEM has recently completed a project where an interactive vulnerability map and screening-level monitoring protocol for assessing the potential environmental impact of unconventional gas mining by means of hydraulic fracturing was developed. These tools will aid decision making at national level by providing information on the environment’s vulnerability to unconventional gas mining.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept