Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 July 2022 | Story Mandi Smallhorne
Cathedral Peak

Why mountain research matters 

“I don’t think South Africa is prepared for the possibility of a Gauteng Day Zero drought,” said Professor Francois Engelbrecht, director of the Global Change Institute at the University of the Witwatersrand. 

Professor Engelbrecht was a keynote speaker at a session of the Southern African Mountain Conference 2022, held in the Drakensberg in mid-March this year and supported by, among others, the Afromontane Research Unit at the University of the Free State (UFS). The session, hosted by international network, GEO Mountains, looked at Long-term monitoring activities and associated data availability for climate change-related applications across Africa’s mountains: status quo and next steps.

The professor went on to say we came very, very close in the 2015-2016 drought, when the Vaal Dam dropped to 25% of capacity. Had it dropped just a bit more, to 20%, the most densely populated province in South Africa, our economic hub, would have been in serious trouble, as there would have been too little water to enable pumping the last dregs into the province.

What’s the link between a Day Zero event in Gauteng and data about mountain environments?

Think of the water towers that dot the Highveld landscape in Gauteng, very visible to residents of the suburbs. Mountains can be seen as massive ‘water towers’ that provide water to people hundreds, even thousands, of kilometres from their foothills. As Dr James Thornton of GEO Mountains, co-host of the session, explained, mountains provide a flow of ecosystem services; water provision is just one of them, but it is of critical importance. “The mountains are crucial for this, due to the orographic enhancement of precipitation.” The shape and topography of mountains (their orography), forces moist air upwards into cooler air at higher elevations – an effect called ‘orographic uplift’ – so that vapour held in the air condenses into water. 

So as moisture-laden air sweeps in from the warm Indian Ocean to the east of us, it encounters the upward thrust of the long Drakensberg chain of mountains, from the Eastern Cape through Lesotho and KwaZulu-Natal and on, up to the Wolksberg Mountains in Limpopo. The upward movement of the air into colder regions triggers precipitation – rain, mist, sometimes snow.

And that moisture, falling on the soil and rocks in cool mountain air, is also less likely to evaporate and return rapidly to the atmosphere, as it might do on the coastal plains and lowlands.

The result? The most obvious consequence is waterfalls glittering in the mountain cliffs and swollen streams rushing down the slopes. Look at maps and you’ll see rivers springing from mountain sources everywhere in the world, like the Tugela heading east and the Orange flowing west from the Drakensberg in South Africa and Lesotho, or the Ganges and Indus rising in the Himalayas and the Rhine and Rhône rising in the Alps.  

Mountain water also seeps into the ground, making its way through soil and rocks and recharging the groundwater within and beyond the mountains and their foothills. This recharge of the water table from high up in the mountains also contributes to streams and rivers that supply so much of our water needs, scientists have shown.  

Mountain water in Gauteng


Gauteng residents are well aware of the role of the Vaal River in the Vaal Water Supply System, but do we understand just how much of our water originates in the Drakensberg? According to the Water Research Commission “transfers from the Maloti Drakensberg (34.4%) and the Northern Drakensberg SWSA (18.9%)” are critical to our water supply. That’s a little more than half our water in Gauteng coming from the Drakensberg.

Engelbrecht and his co-authors wrote a few years ago: “Except for the Southern Cape, the Drakensberg is the single most important source of water in Southern Africa and supplies regions where the bulk of the population resides.” (The Drakensberg Escarpment as the Great Supplier of Water to South Africa, S.J. Taylor, et al, in Developments in Earth Surface Processes Volume 21, Mountain Ice and Water, Investigations of the Hydrologic Cycle in Alpine Environments.) But, they added, due to population growth and other pressures, “In South Africa, it is now expected that demand for water will exceed supply by 2025 if nothing is done to supplement current water resources.”

That in itself is reason enough to focus on monitoring our mountains, and to support scientists observing and gathering data there. But add that to Professor Engelbrecht’s prediction that “multiyear El Nino-type droughts may plausibly occur from the mid-century (2030-2060) onwards” due to the climate change crisis, and it’s clear that we desperately need to understand the detail of how our mountains provide us with water; we urgently need to understand what is changing in the mountains.

Research matters

The ongoing and rapid changes we’re seeing in these very sensitive environments, from changing precipitation patterns, to changing land-use, to increases in population, is why we really need to “monitor and track these changes, to understand the biophysical processes and their interaction with society, and to be able to better estimate the chance, for instance, of future extreme droughts on a more local scale so we can develop measures for mitigation and adaptation,” said Dr Thornton. Better management of upstream water resources – such as the massive ‘water tower’ in the Drakensberg and elsewhere – is one tactic we should be vigorously pursuing.

There is a paucity of data about our precious mountainous areas across the world, but especially in Africa, and one of the messages of this workshop and of the conference as a whole was the importance of not just doing the monitoring and gathering of data, but making it readily accessible to all. 

Dr Susan Janse van Rensburg (of the South African Environment Observation Network or SAEON, a national facility of the National Research Foundation) spoke about the in situ environmental monitoring that is being done in important mountain areas, including Cathedral Peak, the heart of the Central Drakensberg where the conference was being held. She introduced SAEON’s new Data Portal for researchers to access and share data about mountains – and not just in South Africa, but across the whole continent. 

Omar Seidu gave a presentation on an initiative called Digital Earth Africa which collates and curates satellite data – including data on mountains. And GEO Mountains itself runs inventories which “seek to identify, link up, and make accessible existing data and information resources across the world’s mountains”.

“We’re trying to make it straightforward for researchers on the ground to make their datasets available to anybody if they choose to do so,” said Dr Thornton.

Research, observations and data-gathering on the ground (and from satellites) is the foundation for intelligent analysis, which results in solid evidence that can guide policymakers and the public to make the best choices. Mountains, our water towers, have perhaps not been enough of a focus for society in the past; information about their vital role in something as basic as water provision, and better understanding of the processes that furnish us with water, will surely help us to both mitigate and adapt to a future in which water scarcity looms so large.

News Archive

UFS hosts consortium to discuss broadening subcontinent’s food base
2017-03-14

Description: Cactus Tags: Cactus

The Steering Committee of the Collaborative
Consortium for Broadening the Food Base comprises,
from the left: Prof Wijnand Swart (UFS),
Dr Sonja Venter (ARC) and Dr Eric Amonsou (DUT).
Photo: Andrè Grobler

There is huge pressure on the agricultural industry in southern Africa to avert growing food insecurity. One of the ways to address this is to broaden the food base on the subcontinent via crop production. Climate change, urbanisation, population growth, pests and diseases continually hamper efforts to alleviate food insecurity. Furthermore, our dependence on a few staple crops such as maize, wheat, potatoes, and sunflower, serve to exacerbate food insecurity.  

Broadening the food base  
To address broadening the food base in southern Africa, scientists from the University of the Free State (UFS), the Durban University of Technology (DUT) and the Agricultural Research Council (ARC) have formed a Collaborative Consortium for the development of underutilised crops by focusing on certain indigenous and exotic crops. The Consortium met at the UFS this week for two days (6, 7 March 2017) to present and discuss their research results. The Principal Investigator of the Consortium, Prof Wijnand Swart of the Department of Plant Sciences in the Faculty of Natural and Agricultural Sciences, said awareness had risen for the need to rescue and improve the use of orphan crops that were up to now, for the most part, left aside by research, technological development, and marketing systems.  

"Many indigenous southern African
plant grains, vegetables and tubers
have the potential to provide a variety
of diets and broaden the household
food base.”

Traditional crops Generally referred to as alternative, traditional or niche crops, five crops are being targeted by the Consortium, namely, two grain legumes, (Bambara groundnut and cowpea), amaranthus (leaf vegetable), cactus pear or prickly pear and amadumbe (a potato-like tuber). Swart said these five crops would play an important role in addressing the food and agricultural challenges of the future. “Many indigenous southern African plant grains, vegetables and tubers have the potential to provide a variety of diets and broaden the household food base.” The potential of the many so-called underutilised crops lies not only in their hardiness and nutritional value but in their versatility of utilisation. "It may be that they contain nutrients that can be explored to meet the demand for functional foods," said Swart.

Scientific institutions working together
The Collaborative Consortium between the three scientific institutions is conducting multi-disciplinary research to develop crop value chains for the five underutilised crops mentioned above. The UFS and ARC are mainly involved in looking at production technologies for managing crop environments and genetic technologies for crop improvement. The DUT is focusing on innovative products development and market development.  

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept