Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 July 2022 | Story Lacea Loader

The Council of the University of the Free State (UFS) approved the lifting of the institution’s COVID-19 Regulations and Required Vaccination Policy with immediate effect.

“Since the declaration by the Government on 22 June 2022 that the COVID-19 regulations will be repealed, the UFS has conducted a risk assessment to determine the risk of exposure to staff and students. From the assessment, it was clear that the university’s COVID-19 infections are currently a low risk,” said Prof Francis Petersen, Rector and Vice-Chancellor of the UFS.

Factors that contributed to this low risk include the following:

  • No COVID-19 positive cases among UFS staff and students have been reported in the past month.
  • The high number of vaccinations among UFS stakeholders. In addition, the current national immunity level of the total South African population is high.
  • Certain faculties and postgraduate students are currently proceeding with hybrid/online learning, which minimises the risk of possible COVID-19 infections on the university’s three campuses.
  • In its correspondence of 23 June 2022, the UFS urged all staff and students to continue wearing masks should they have comorbidities and/or symptoms of illness, thus safeguarding other stakeholders.

“We believe that COVID-19 no longer poses an immediate threat to the safety of our staff and students, and that the pandemic is at a stage where they should take responsibility for their own safety. This can be mainly ascribed to the success of the implementation of the policy. Staff and students who still wish to wear masks are urged to do so at their own discretion. Those who have not yet been vaccinated against the virus and have no

known condition preventing them from doing so, are advised to get vaccinated for their own safety and protection,” said Prof Petersen.

The UFS COVID-19 Regulations and Required Vaccination Policy was approved by the University Council on 26 November 2021 and implemented on 6 December 2021. The university commenced restricting unvaccinated individuals from accessing its campuses as of 14 February 2022.

“If the national regulatory environment with respect to COVID-19 is changing to such an extent that the policy needs to be re-implemented, the university’s executive management will act accordingly, and hence the COVID-19 Regulations and Required Vaccination Policy remains a policy of the university as approved by the UFS Council on 26 November 2021.” said Prof Petersen.

 

Uplifting of the COVID-19 vaccination policy - mitigation strategies of the University of the Free State.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept