Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 July 2022 | Story Lacea Loader

The Council of the University of the Free State (UFS) approved the lifting of the institution’s COVID-19 Regulations and Required Vaccination Policy with immediate effect.

“Since the declaration by the Government on 22 June 2022 that the COVID-19 regulations will be repealed, the UFS has conducted a risk assessment to determine the risk of exposure to staff and students. From the assessment, it was clear that the university’s COVID-19 infections are currently a low risk,” said Prof Francis Petersen, Rector and Vice-Chancellor of the UFS.

Factors that contributed to this low risk include the following:

  • No COVID-19 positive cases among UFS staff and students have been reported in the past month.
  • The high number of vaccinations among UFS stakeholders. In addition, the current national immunity level of the total South African population is high.
  • Certain faculties and postgraduate students are currently proceeding with hybrid/online learning, which minimises the risk of possible COVID-19 infections on the university’s three campuses.
  • In its correspondence of 23 June 2022, the UFS urged all staff and students to continue wearing masks should they have comorbidities and/or symptoms of illness, thus safeguarding other stakeholders.

“We believe that COVID-19 no longer poses an immediate threat to the safety of our staff and students, and that the pandemic is at a stage where they should take responsibility for their own safety. This can be mainly ascribed to the success of the implementation of the policy. Staff and students who still wish to wear masks are urged to do so at their own discretion. Those who have not yet been vaccinated against the virus and have no

known condition preventing them from doing so, are advised to get vaccinated for their own safety and protection,” said Prof Petersen.

The UFS COVID-19 Regulations and Required Vaccination Policy was approved by the University Council on 26 November 2021 and implemented on 6 December 2021. The university commenced restricting unvaccinated individuals from accessing its campuses as of 14 February 2022.

“If the national regulatory environment with respect to COVID-19 is changing to such an extent that the policy needs to be re-implemented, the university’s executive management will act accordingly, and hence the COVID-19 Regulations and Required Vaccination Policy remains a policy of the university as approved by the UFS Council on 26 November 2021.” said Prof Petersen.

 

Uplifting of the COVID-19 vaccination policy - mitigation strategies of the University of the Free State.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept