Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 July 2022 | Story Lacea Loader

The Council of the University of the Free State (UFS) approved the lifting of the institution’s COVID-19 Regulations and Required Vaccination Policy with immediate effect.

“Since the declaration by the Government on 22 June 2022 that the COVID-19 regulations will be repealed, the UFS has conducted a risk assessment to determine the risk of exposure to staff and students. From the assessment, it was clear that the university’s COVID-19 infections are currently a low risk,” said Prof Francis Petersen, Rector and Vice-Chancellor of the UFS.

Factors that contributed to this low risk include the following:

  • No COVID-19 positive cases among UFS staff and students have been reported in the past month.
  • The high number of vaccinations among UFS stakeholders. In addition, the current national immunity level of the total South African population is high.
  • Certain faculties and postgraduate students are currently proceeding with hybrid/online learning, which minimises the risk of possible COVID-19 infections on the university’s three campuses.
  • In its correspondence of 23 June 2022, the UFS urged all staff and students to continue wearing masks should they have comorbidities and/or symptoms of illness, thus safeguarding other stakeholders.

“We believe that COVID-19 no longer poses an immediate threat to the safety of our staff and students, and that the pandemic is at a stage where they should take responsibility for their own safety. This can be mainly ascribed to the success of the implementation of the policy. Staff and students who still wish to wear masks are urged to do so at their own discretion. Those who have not yet been vaccinated against the virus and have no

known condition preventing them from doing so, are advised to get vaccinated for their own safety and protection,” said Prof Petersen.

The UFS COVID-19 Regulations and Required Vaccination Policy was approved by the University Council on 26 November 2021 and implemented on 6 December 2021. The university commenced restricting unvaccinated individuals from accessing its campuses as of 14 February 2022.

“If the national regulatory environment with respect to COVID-19 is changing to such an extent that the policy needs to be re-implemented, the university’s executive management will act accordingly, and hence the COVID-19 Regulations and Required Vaccination Policy remains a policy of the university as approved by the UFS Council on 26 November 2021.” said Prof Petersen.

 

Uplifting of the COVID-19 vaccination policy - mitigation strategies of the University of the Free State.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept