Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Christopher Rothmann
Christopher Rothmann is standing in one of the containers that will form part of the science park for entrepreneurs.

Adding to the value chain, extending the teaching and learning process, and supporting the development of the surrounding communities – this is the result of seven years of hard work for the Paradys Experimental Farm of the University of the Free State (UFS). Whether it is yoghurt and cheese from the dairy factory, wool products from the wool production and wool processing hub, or an ice-cold beer from the fermentation institute, the farm will soon share the fruits of its labour with the Bloemfontein community.

Situated outside Bloemfontein on the road to Reddersburg, the farm is an agricultural training centre in the Faculty of Natural and Agricultural Sciences for UFS students who, among others, take modules in agriculture, working with cattle, sheep, crop cultivation, and milk production. Moreover, the farm also offers training opportunities to members of the community, ranging from short courses in animal health and animal breeding to workshops in wool classing, sheep handling, and sheep management. 

“We want to take students through the entire production chain. It is a valuable part of our teaching and can make our work on the farm more profitable. The aim is to extend the use of a specific product. Instead of only selling milk, we add value to the product and sell it, for instance, as cheese or yoghurt. Or in the case of grain, rather than only selling it to wholesalers to make bread, it can be fermented into beer and waste can be used as animal feed,” says Prof Frikkie Neser, Head of the Department of Animal Sciences. He is the convenor of this initiative, along with the Dean of the Faculty of Natural and Agricultural Sciences, Prof Danie Vermeulen.

Currently, eight departments in four of the faculties at the UFS are involved in the work on the experimental farm. 

Natural products in the dairy processing unit

Dr Analie Hattingh, Manager of the dairy processing unit and Lecturer in the Department of Animal Science, is responsible for the entire production process in the dairy processing unit, from concept development up to sales. Since the installation of the unit started in May 2021, two lines of cheese have been produced – a delicious semi-hard, full-cream all-rounder, and a more exotic cheese with different flavours, containing ingredients such as cumin, chili, garlic, peppercorns, and mango. The Department of Sustainable Food Systems and Development (CENSARD) will later cultivate and harvest some of these herbs in the tunnels on the experimental farm. The department will also be involved in product development.

More recently, Dr Hattingh also started to investigate the development of a yoghurt line with different flavours – the more traditional mixed fruit and strawberry, as well as more exciting flavours such as pear caramel.   

“All our products are natural,” she says. 

This initiative adds to the already established centralised infrastructure hub on the experimental farm, which supports wool production and processing. Under the auspices of CENSARD, members from the community are taught, among others, entrepreneurial skills in different aspects of wool processing, such as knitting, making felt products, spinning, and weaving. 

The group of women in the wool processing unit is producing, among others, felt pencil cases, laptop bags, hand/
bookbags, tray cloths, and soft toys. 
Photo: Leonie Bolleurs. 

Creating products from dairy and wool is not only contributing to job creation; it also empowers communities to create a sustainable livelihood for themselves.

Award-winning beer 

Award-winning beer makers Dr Errol Cason, Senior Lecturer in the Department of Animal Science, and Dr Christopher Rothmann, postdoctoral research fellow in the Department of Animal Sciences, are looking forward to opening a fermentation institute on the Paradys Experimental Farm. 

With their background as microbiologists, the two founders of Liquid Culture (in 2018) produced commercial batches of yeast used mainly by breweries for the fermentation of beer. They are supplying Bloemfontein as well as several breweries nationwide with their quality yeast. 

At the fermentation institute on the farm, these home brewers and owners of Kraft Brewing Co hope to not only continue brewing bear, but to also teach others about the fermentation process. Installation of the vessels, which were previously part of the South African Brewery’s World of Learning, is almost complete.

Dr Errol Cason, Dr Christopher Rothmann, and Barry Crous
Dr Errol Cason, Dr Christopher Rothmann, and Barry Crous at what will soon be a fermentation institute on
the Paradys Experimental Farm. 
Photo: Leonie Bolleurs

Entrepreneur science park 

Prof Neser says they are also in the process of constructing an entrepreneur (science) park for students in the sciences. Upon completion, the park will boast nine containers with the necessary infrastructure for students to work on innovation projects – promoting an entrepreneurial culture at the UFS. 

The farm will also provide a service to the agriculture industry by testing feed intake and growth rate in cattle, evaluating these animals’ efficiency in converting feed to body mass. Prof Neser says the UFS is the only university conducting these tests on cattle. Similar trials will also be conducted on sheep, in collaboration with BKB, ALPHA, and RFID.

Grass has been planted in the open areas, and trees and tables with benches are planned to create a welcoming space for school groups to visit during the week in order to learn about the wool and dairy value chain. Members of the community will also be invited to display and sell their products on Saturdays, along with the goods produced on the farm. The scene is set, and soon all projects will benefit not only UFS staff and students, but also the community.

Dr Analie Hattingh is constantly looking at developing
new products for the dairy processing 
unit. Here she
i
s testing feta cheese. 


News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept