Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Christopher Rothmann
Christopher Rothmann is standing in one of the containers that will form part of the science park for entrepreneurs.

Adding to the value chain, extending the teaching and learning process, and supporting the development of the surrounding communities – this is the result of seven years of hard work for the Paradys Experimental Farm of the University of the Free State (UFS). Whether it is yoghurt and cheese from the dairy factory, wool products from the wool production and wool processing hub, or an ice-cold beer from the fermentation institute, the farm will soon share the fruits of its labour with the Bloemfontein community.

Situated outside Bloemfontein on the road to Reddersburg, the farm is an agricultural training centre in the Faculty of Natural and Agricultural Sciences for UFS students who, among others, take modules in agriculture, working with cattle, sheep, crop cultivation, and milk production. Moreover, the farm also offers training opportunities to members of the community, ranging from short courses in animal health and animal breeding to workshops in wool classing, sheep handling, and sheep management. 

“We want to take students through the entire production chain. It is a valuable part of our teaching and can make our work on the farm more profitable. The aim is to extend the use of a specific product. Instead of only selling milk, we add value to the product and sell it, for instance, as cheese or yoghurt. Or in the case of grain, rather than only selling it to wholesalers to make bread, it can be fermented into beer and waste can be used as animal feed,” says Prof Frikkie Neser, Head of the Department of Animal Sciences. He is the convenor of this initiative, along with the Dean of the Faculty of Natural and Agricultural Sciences, Prof Danie Vermeulen.

Currently, eight departments in four of the faculties at the UFS are involved in the work on the experimental farm. 

Natural products in the dairy processing unit

Dr Analie Hattingh, Manager of the dairy processing unit and Lecturer in the Department of Animal Science, is responsible for the entire production process in the dairy processing unit, from concept development up to sales. Since the installation of the unit started in May 2021, two lines of cheese have been produced – a delicious semi-hard, full-cream all-rounder, and a more exotic cheese with different flavours, containing ingredients such as cumin, chili, garlic, peppercorns, and mango. The Department of Sustainable Food Systems and Development (CENSARD) will later cultivate and harvest some of these herbs in the tunnels on the experimental farm. The department will also be involved in product development.

More recently, Dr Hattingh also started to investigate the development of a yoghurt line with different flavours – the more traditional mixed fruit and strawberry, as well as more exciting flavours such as pear caramel.   

“All our products are natural,” she says. 

This initiative adds to the already established centralised infrastructure hub on the experimental farm, which supports wool production and processing. Under the auspices of CENSARD, members from the community are taught, among others, entrepreneurial skills in different aspects of wool processing, such as knitting, making felt products, spinning, and weaving. 

The group of women in the wool processing unit is producing, among others, felt pencil cases, laptop bags, hand/
bookbags, tray cloths, and soft toys. 
Photo: Leonie Bolleurs. 

Creating products from dairy and wool is not only contributing to job creation; it also empowers communities to create a sustainable livelihood for themselves.

Award-winning beer 

Award-winning beer makers Dr Errol Cason, Senior Lecturer in the Department of Animal Science, and Dr Christopher Rothmann, postdoctoral research fellow in the Department of Animal Sciences, are looking forward to opening a fermentation institute on the Paradys Experimental Farm. 

With their background as microbiologists, the two founders of Liquid Culture (in 2018) produced commercial batches of yeast used mainly by breweries for the fermentation of beer. They are supplying Bloemfontein as well as several breweries nationwide with their quality yeast. 

At the fermentation institute on the farm, these home brewers and owners of Kraft Brewing Co hope to not only continue brewing bear, but to also teach others about the fermentation process. Installation of the vessels, which were previously part of the South African Brewery’s World of Learning, is almost complete.

Dr Errol Cason, Dr Christopher Rothmann, and Barry Crous
Dr Errol Cason, Dr Christopher Rothmann, and Barry Crous at what will soon be a fermentation institute on
the Paradys Experimental Farm. 
Photo: Leonie Bolleurs

Entrepreneur science park 

Prof Neser says they are also in the process of constructing an entrepreneur (science) park for students in the sciences. Upon completion, the park will boast nine containers with the necessary infrastructure for students to work on innovation projects – promoting an entrepreneurial culture at the UFS. 

The farm will also provide a service to the agriculture industry by testing feed intake and growth rate in cattle, evaluating these animals’ efficiency in converting feed to body mass. Prof Neser says the UFS is the only university conducting these tests on cattle. Similar trials will also be conducted on sheep, in collaboration with BKB, ALPHA, and RFID.

Grass has been planted in the open areas, and trees and tables with benches are planned to create a welcoming space for school groups to visit during the week in order to learn about the wool and dairy value chain. Members of the community will also be invited to display and sell their products on Saturdays, along with the goods produced on the farm. The scene is set, and soon all projects will benefit not only UFS staff and students, but also the community.

Dr Analie Hattingh is constantly looking at developing
new products for the dairy processing 
unit. Here she
i
s testing feta cheese. 


News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept