Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 March 2022 | Story NONSINDISO QWABE | Photo Supplied
Dr Ralph Clarke
Dr Ralph Clark, Director of the Afromontane Research Unit.

The African Mountain Research Foundation (AMRF), in association with the Afromontane Research Unit (ARU) of the University of the Free State (UFS), and the Global Mountain Safeguard Research Programme (GLOMOS), is hosting the first-ever Southern African Mountain Conference (SAMC2022). The theme of the conference is Southern African Mountains – their value and vulnerabilities.

The conference will bring relevant people together into one space for networking and information sharing, leading to more robust regional and international collaborations and comparative mountain studies with an increase in research activities, student capacity, researcher capacity and academic outputs that feed into policy and action. 

The conference will take place from 14 to 17 March 2022 in the majestic Maloti-Drakensberg Mountains in South Africa and Lesotho. 

According to the SAMC2022 website, this is a truly Southern African regional mountain conference, targeting the African region south of the Congo rainforest (DRC) and Lake Rukwa (Tanzania), but including Madagascar, the Comoros and the Mascarenes (i.e., Angola, the Comoros, the Democratic Republic of the Congo [southern mountains], Eswatini, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, La Réunion, South Africa, southern Tanzania, Zambia, and Zimbabwe).

Dr Ralph Clark, ARU Director, said the conference would be a high-level international event with UNESCO patronage and very valuable sponsors.

“The programme will have six parallel tracks (one being dedicated to postgraduate students), with about 200 papers being delivered. In addition, we have some very high-profile special sessions, such as an MRI special session on long-term monitoring activities and associated data availability for climate change-related applications across Africa’s mountains, as well as a UNESCO special session on regional collaboration. We also have Prof Julian Bayliss, described as the man who discovered an unseen world, as the guest speaker at the closing event.”

The conference will bring together relevant people in one space for networking and information sharing, leading to more robust regional and international collaborations and comparative mountain studies, with an increase in research activities, student capacity, researcher capacity, and academic outputs that feed into policy and action.

The GLOMOS team, one of the long-term partners of the ARU, spent the week of 8 to 11 March 2022 on the Qwaqwa Campus to strengthen collaboration and pave the way for new research opportunities in Phuthaditjhaba and the Maloti-Drakensberg.
GLOMOS represents an interface between the United Nations University Institute for Environment and Human Security (UNU-EHS) and Eurac Research. Postdoctoral fellow, Dr Stefano Terzi, said: “It’s very interesting for us to look at the Maloti-Drakensberg area because of its diversity. We are in the process of really exciting collaborations.”
Their projects include an understanding of the root causes of land degradation and improving decision-making processes for current water management within the context of water scarcity in the Maloti-Drakensberg.
• For more information on the speakers and the programme, click here 


News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept