Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 May 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Astrophysics
The Astrophysics Research Group in the UFS Department of Physics recently collaborated with the Institute of Astrophysics of Andalusia (IAA) in Spain and the University College of Dublin (UCD) in Ireland, to install a robotic telescope at the Boyden Observatory. Pictured here, are from the bottom, Teboho Rakotsoana and Simon Rakotsoana from the UFS; Emilio J Garcia from the Institute of Astrophysics of Andalusia; Prof Pieter Meintjes; and Prof Antonio M Carrillo from UCD.

The Astrophysics Research Group in the Department of Physics at the University of the Free State (UFS) is part of an international collaboration with the Institute of Astrophysics of Andalusia (IAA) in Spain and the University College of Dublin (UCD) in Ireland, which focuses on measuring the brightness of transient sources. Knowledge gained from studying these cosmic X-ray sources, which seem to appear in the sky for a short time before disappearing, will lead to a more complete and better understanding of the universe, believes Prof Pieter Meintjes, Professor of Physics and Head of the Astrophysics Programme in the Department of Physics.

To facilitate these observations, a robotic telescope network has been established, with the Boyden Observatory selected as one of the sites for BOOTES 6 (a Burst Observer and Optical Transient Exploring System).

The UFS and the IAA started working on this project more than two years ago. The foundation and pier were built through a local tender, and in January 2020, part of the dome of the structure housing the telescope arrived by ship. Due to the COVID-19 pandemic there were some delays, resulting in the crew from Spain only arriving in South Africa with the telescope and hardware in November 2021, but having to return to their country without completing the installation. They returned in April, and in early May completed assembling the telescope in collaboration with UFS researchers and technicians.

Robotic telescope opportunity to further own research

The main scientific objective of the robotic telescope is to observe and monitor the optic counterparts of gamma-ray bursts as quickly as possible when detected from space or other ground-based observatories.

Prof Meintjes says they will use the telescope to observe these transient sources that goes into an eruptive phase for a short span of time. “Since BOOTES has an enormously fast slew rate, it can start observations of erupting sources within a few seconds, which allows the Astrophysics Research Group to get data very quickly. This will certainly give us an edge over other international astronomy groups that are also involved in the same type of research,” says Prof Meintjes, the local coordinator of the project who is overseeing the whole operation locally. 

He explains the importance of monitoring these packets of enormous energy. “By observing the optical afterglow of the gamma-ray bursts, we can establish its point of origin in space. Furthermore, the shape of the optical afterglow light curve gives insight into the type of mechanism behind the gamma-ray burst, i.e., whether the burst is produced by a collision between two neutron stars or by the explosion of a hypernova event.” 

The knowledge gained with research made possible by the robotic telescope will lead to a more complete and better understanding of the universe. – Prof Peter Meintjes

The UFS Astrophysics Research Group, with its research focus on high-energy astronomy and the physics behind gamma-ray bursts, has a particular interest in this project. As the local custodians of the project and in terms of a memorandum of understanding, the group is guaranteed a certain amount of telescope time for its own in-house observation programmes.

Project expands UFS’ international research footprint

Besides the opportunity for knowledge exchange, this project establishes Bloemfontein as a region where research of international quality is being done and will help to attract talented learners to the UFS. “The successful operation of the robotic telescope may also draw more international groups to bring robotic telescopes to Boyden, thus expanding our international research footprint,” he adds. 

The fact that the Boyden Observatory is in the Southern Hemisphere and has access to the galactic centre region with its host of very interesting astronomical objects and the Magellanic Clouds, makes it a very attractive site for astronomical research,” says Prof Meintjes. 

(Dr Pat van Heerden from the UFS Department of Physics. Photo: Supplied)

“We also have a number of years of experience in robotic telescopes in the sense that we have been hosting the Watcher telescope, operated by the University College Dublin in Ireland, since 2001. Once mounted in middle May 2022, this will then be Boyden’s second robotic telescope.”

News Archive

Africa's Black Rhino conservation strategy must change
2017-07-10

 Description: Black Rhino Tags: conservation strategy, black rhino, Nature Scientific Reports, National Zoological Gardens of South Africa, extinction, decline in genetic diversity, Prof Antoinette Kotze, Research and Scientific Services, Dr Desire Dalton 

The black rhino is on the brink of extinction. The study that was 
published in the Nature Scientific Reports reveals that the
species has lost an astonishing 69% of its genetic variation. 
Photo: iStock

The conservation strategy of the black rhino in Africa needs to change in order to protect the species from extinction, a group of international researchers has found. The study that was published in the Nature Scientific Reports reveals that the species has lost an astonishing 69% of its genetic variation. 

South African researchers took part 

The researchers, which included local researchers from the National Zoological Gardens of South Africa (NZG), have highlighted the fact that this means the black rhino is on the brink of extinction. "We have found that there is a decline in genetic diversity, with 44 of 64 genetic lineages no longer existing," said Prof Antoinette Kotze, the Manager of Research and Scientific Services at the Zoo in Pretoria. She is also affiliate Professor in the Department of Genetics at the University of the Free State and has been involved in rhino research in South Africa since the early 2000s.  

DNA from museums and the wild 
The study compared DNA from specimens in museums around the world, which originated in the different regions of Africa, to the DNA of live wild animals. The DNA was extracted from the skin of museum specimen and from tissue and faecal samples from animals in the wild. The research used the mitochondrial genome.

"The rhino poaching ‘pandemic’
needs to be defeated, because
it puts further strain on the genetic
diversity of the black rhino.”


Ability to adapt 
Dr Desire Dalton, one of the collaborators in the paper and a senior researcher at the NZG, said the loss of genetic diversity may compromise the rhinos’ ability to adapt to climate change. The study further underlined that two distinct populations now exists on either side of the Zambezi River. Dr Dalton said these definite populations need to be managed separately in order to conserve their genetic diversity. The study found that although the data suggests that the future is bleak for the black rhinoceros, the researchers did identify populations of priority for conservation, which might offer a better chance of preventing the species from total extinction. However, it stressed that the rhino poaching ‘pandemic’ needs to be defeated, because it puts further strain on the genetic diversity of the black rhino. 

Extinct in many African countries 
The research report further said that black rhino had been hunted and poached to extinction in many parts of Africa, such as Nigeria, Chad, Cameroon, Sudan, and Ethiopia. These rhino are now only found in five African countries. They are Tanzania, Zimbabwe, Kenya, Namibia, and South Africa, where the majority of the animals can be found. 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept