Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 May 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Astrophysics
The Astrophysics Research Group in the UFS Department of Physics recently collaborated with the Institute of Astrophysics of Andalusia (IAA) in Spain and the University College of Dublin (UCD) in Ireland, to install a robotic telescope at the Boyden Observatory. Pictured here, are from the bottom, Teboho Rakotsoana and Simon Rakotsoana from the UFS; Emilio J Garcia from the Institute of Astrophysics of Andalusia; Prof Pieter Meintjes; and Prof Antonio M Carrillo from UCD.

The Astrophysics Research Group in the Department of Physics at the University of the Free State (UFS) is part of an international collaboration with the Institute of Astrophysics of Andalusia (IAA) in Spain and the University College of Dublin (UCD) in Ireland, which focuses on measuring the brightness of transient sources. Knowledge gained from studying these cosmic X-ray sources, which seem to appear in the sky for a short time before disappearing, will lead to a more complete and better understanding of the universe, believes Prof Pieter Meintjes, Professor of Physics and Head of the Astrophysics Programme in the Department of Physics.

To facilitate these observations, a robotic telescope network has been established, with the Boyden Observatory selected as one of the sites for BOOTES 6 (a Burst Observer and Optical Transient Exploring System).

The UFS and the IAA started working on this project more than two years ago. The foundation and pier were built through a local tender, and in January 2020, part of the dome of the structure housing the telescope arrived by ship. Due to the COVID-19 pandemic there were some delays, resulting in the crew from Spain only arriving in South Africa with the telescope and hardware in November 2021, but having to return to their country without completing the installation. They returned in April, and in early May completed assembling the telescope in collaboration with UFS researchers and technicians.

Robotic telescope opportunity to further own research

The main scientific objective of the robotic telescope is to observe and monitor the optic counterparts of gamma-ray bursts as quickly as possible when detected from space or other ground-based observatories.

Prof Meintjes says they will use the telescope to observe these transient sources that goes into an eruptive phase for a short span of time. “Since BOOTES has an enormously fast slew rate, it can start observations of erupting sources within a few seconds, which allows the Astrophysics Research Group to get data very quickly. This will certainly give us an edge over other international astronomy groups that are also involved in the same type of research,” says Prof Meintjes, the local coordinator of the project who is overseeing the whole operation locally. 

He explains the importance of monitoring these packets of enormous energy. “By observing the optical afterglow of the gamma-ray bursts, we can establish its point of origin in space. Furthermore, the shape of the optical afterglow light curve gives insight into the type of mechanism behind the gamma-ray burst, i.e., whether the burst is produced by a collision between two neutron stars or by the explosion of a hypernova event.” 

The knowledge gained with research made possible by the robotic telescope will lead to a more complete and better understanding of the universe. – Prof Peter Meintjes

The UFS Astrophysics Research Group, with its research focus on high-energy astronomy and the physics behind gamma-ray bursts, has a particular interest in this project. As the local custodians of the project and in terms of a memorandum of understanding, the group is guaranteed a certain amount of telescope time for its own in-house observation programmes.

Project expands UFS’ international research footprint

Besides the opportunity for knowledge exchange, this project establishes Bloemfontein as a region where research of international quality is being done and will help to attract talented learners to the UFS. “The successful operation of the robotic telescope may also draw more international groups to bring robotic telescopes to Boyden, thus expanding our international research footprint,” he adds. 

The fact that the Boyden Observatory is in the Southern Hemisphere and has access to the galactic centre region with its host of very interesting astronomical objects and the Magellanic Clouds, makes it a very attractive site for astronomical research,” says Prof Meintjes. 

(Dr Pat van Heerden from the UFS Department of Physics. Photo: Supplied)

“We also have a number of years of experience in robotic telescopes in the sense that we have been hosting the Watcher telescope, operated by the University College Dublin in Ireland, since 2001. Once mounted in middle May 2022, this will then be Boyden’s second robotic telescope.”

News Archive

Self-help building project helps to change lives
2017-12-15


 Description: Eco house read more Tags: Anita Venter, Start Living Green’, Earthship Biotecture Academy, construction skills 

Anita Venter, lecturer in the Centre for Development Support, with the residents of
the eco friendly house. Photo: Supplied

UFS PhD student Anita Venter did not know it in the beginning, but her doctoral research would eventually change her life and the lives of many others. 

The research was whether South Africa’s housing policies were socially and culturally responsive to grassroots reality in informal settlements. Venter agreed her research approach might have raised a few eye brows, but it was a journey she holds had more benefits than failures. 

Green living
For her case studies, Venter looked at ‘Start Living Green’ as a concept and further examined the implementation models of Earthship Biotecture Academy in New Mexico and Central America and the Long Way Home non-profit organisation in Guatemala. 

These groups train people with no specialised construction skills in applying and managing environmentally sound self-help building projects. Furthermore, their primary objectives were not building-related, but people-centred, with an advocacy role to create social, environmental and educational change through utilising the building technologies. 

It resulted in Venter signing up for a course in Guatemala to get the skills to implement her case studies here at home in Bloemfontein. 

An experimental mud, straw and waste material structure in her back yard grew into similar houses built in informal settlements, through the transfer of knowledge of indigenous building methods.  

Are rickety corrugated iron shacks only alternative?

Her case studies, one in Freedom Square in the Mangaung Metro Municipality, highlighted, among others, baffling tenure insecurities and “tangible conflicts” entrenched between Westernised and African perspectives on home ownership.

Venter says her thesis, in essence, did not oppose existing housing strategies but did challenge the applicability of an economically inclined model as the most appropriate housing option for millions of households living in informal settlements. 

The main findings of the case studies were that self-help building technologies and skills transfer could make a significant contribution to addressing housing shortages in the country; in particular in geographical locations such as the Free State province and other rural areas.

Venter’s own words after her academic endeavour are insightful: “These grassroots individuals’ courage to engage with me in unknown territories, gave me hope in humanity and inherent strength to keep on pursuing our vision of transforming informal settlements into evolving indigenous neighbourhoods of choice instead of only being living spaces of last resort.”

Positive results 
The study has had many positive results. The City of Cape Town is now looking at new innovative building technologies as a result. Most importantly Venter's study will open further discussions that necessarily challenge the status quo views in housing development. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept