Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 May 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Astrophysics
The Astrophysics Research Group in the UFS Department of Physics recently collaborated with the Institute of Astrophysics of Andalusia (IAA) in Spain and the University College of Dublin (UCD) in Ireland, to install a robotic telescope at the Boyden Observatory. Pictured here, are from the bottom, Teboho Rakotsoana and Simon Rakotsoana from the UFS; Emilio J Garcia from the Institute of Astrophysics of Andalusia; Prof Pieter Meintjes; and Prof Antonio M Carrillo from UCD.

The Astrophysics Research Group in the Department of Physics at the University of the Free State (UFS) is part of an international collaboration with the Institute of Astrophysics of Andalusia (IAA) in Spain and the University College of Dublin (UCD) in Ireland, which focuses on measuring the brightness of transient sources. Knowledge gained from studying these cosmic X-ray sources, which seem to appear in the sky for a short time before disappearing, will lead to a more complete and better understanding of the universe, believes Prof Pieter Meintjes, Professor of Physics and Head of the Astrophysics Programme in the Department of Physics.

To facilitate these observations, a robotic telescope network has been established, with the Boyden Observatory selected as one of the sites for BOOTES 6 (a Burst Observer and Optical Transient Exploring System).

The UFS and the IAA started working on this project more than two years ago. The foundation and pier were built through a local tender, and in January 2020, part of the dome of the structure housing the telescope arrived by ship. Due to the COVID-19 pandemic there were some delays, resulting in the crew from Spain only arriving in South Africa with the telescope and hardware in November 2021, but having to return to their country without completing the installation. They returned in April, and in early May completed assembling the telescope in collaboration with UFS researchers and technicians.

Robotic telescope opportunity to further own research

The main scientific objective of the robotic telescope is to observe and monitor the optic counterparts of gamma-ray bursts as quickly as possible when detected from space or other ground-based observatories.

Prof Meintjes says they will use the telescope to observe these transient sources that goes into an eruptive phase for a short span of time. “Since BOOTES has an enormously fast slew rate, it can start observations of erupting sources within a few seconds, which allows the Astrophysics Research Group to get data very quickly. This will certainly give us an edge over other international astronomy groups that are also involved in the same type of research,” says Prof Meintjes, the local coordinator of the project who is overseeing the whole operation locally. 

He explains the importance of monitoring these packets of enormous energy. “By observing the optical afterglow of the gamma-ray bursts, we can establish its point of origin in space. Furthermore, the shape of the optical afterglow light curve gives insight into the type of mechanism behind the gamma-ray burst, i.e., whether the burst is produced by a collision between two neutron stars or by the explosion of a hypernova event.” 

The knowledge gained with research made possible by the robotic telescope will lead to a more complete and better understanding of the universe. – Prof Peter Meintjes

The UFS Astrophysics Research Group, with its research focus on high-energy astronomy and the physics behind gamma-ray bursts, has a particular interest in this project. As the local custodians of the project and in terms of a memorandum of understanding, the group is guaranteed a certain amount of telescope time for its own in-house observation programmes.

Project expands UFS’ international research footprint

Besides the opportunity for knowledge exchange, this project establishes Bloemfontein as a region where research of international quality is being done and will help to attract talented learners to the UFS. “The successful operation of the robotic telescope may also draw more international groups to bring robotic telescopes to Boyden, thus expanding our international research footprint,” he adds. 

The fact that the Boyden Observatory is in the Southern Hemisphere and has access to the galactic centre region with its host of very interesting astronomical objects and the Magellanic Clouds, makes it a very attractive site for astronomical research,” says Prof Meintjes. 

(Dr Pat van Heerden from the UFS Department of Physics. Photo: Supplied)

“We also have a number of years of experience in robotic telescopes in the sense that we have been hosting the Watcher telescope, operated by the University College Dublin in Ireland, since 2001. Once mounted in middle May 2022, this will then be Boyden’s second robotic telescope.”

News Archive

Names are not enough: a molecular-based information system is the answer
2016-06-03

Description: Department of Plant Sciences staff Tags: Department of Plant Sciences staff

Prof Wijnand Swart (left) from the Department of
Plant Sciences at the UFS and Prof Pedro Crous
from the Centraalbureau voor Schimmelcultures (CBS),
in the Netherlands.
Photo: Leonie Bolleurs

South Africa is the second-largest exporter of citrus in the world, producing 60% of all citrus grown in the Southern Hemisphere. It exports more than 70 % of its citrus crop to the European Union and USA. Not being able to manage fungal pathogens effectively can have a serious impact on the global trade in not only citrus but also other food and fibre crops, such as bananas, coffee, and cacao.

The Department of Plant Sciences at the University of the Free State (UFS) hosted a public lecture by Prof Pedro W. Crous entitled “Fungal Pathogens Impact Trade in Food and Fibre: The Need to Move Beyond Linnaeus” on the Bloemfontein Campus.

Prof Crous is Director of the world’s largest fungal Biological Resource Centre, the Centraalbureau voor Schimmelcultures (CBS), in the Netherlands. He is also one of the top mycologists in the world.

Since the topic of his lecture was very pertinent to food security and food safety worldwide, it was co-hosted by the Collaborative Consortium for Broadening the Food Base, a multi-institutional research programme managed by Prof Wijnand Swart in the Department of Plant Sciences.

Reconsider the manner in which pathogens are identified

Prof Crous stressed that, because international trade in products from agricultural crops will expand, the introduction of fungal pathogens to new regions will increase. “There is therefore an urgent need to reconsider the manner in which these pathogens are identified and treated,” he said.

According to Prof Crous, the older Linnaean system for naming living organisms cannot deal with future trade-related challenges involving pests and pathogens. A system, able to identify fungi based on their DNA and genetic coding, will equip scientists with the knowledge to know what they are dealing with, and whether it is a friendly or harmful fungus.

Description: The fungus, Botrytis cinerea Tags: The fungus, Botrytis cinerea

The fungus, Botrytis cinerea, cause of grey mould
disease in many fruit crops.
Photo: Prof Wijnand Swart

Embrace the molecular-based information system

Prof Crous said that, as a consequence, scientists must embrace new technologies, such as the molecular-based information system for fungi, in order to provide the required knowledge.

He presented this very exciting system which will govern the manner in which fungal pathogens linked to world trade are described. This system ensures that people from different countries will know with which pathogen they are dealing. Further, it will assist with the management of pathogens, ensuring that harmful pathogens do not spread from one country to another.

More about Prof Pedro Crous


Prof Crous is an Affiliated Professor at six international universities, including the UFS, where he is associated with the Department of Plant Sciences. He has initiated several major activities to facilitate global research on fungal biodiversity, and has published more than 600 scientific papers, many in high impact journals, and authored or edited more than 20 books.

 

 

Biography Prof Pedro Crous
Philosophical Transactions of the Royal Society B


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept