Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 May 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Astrophysics
The Astrophysics Research Group in the UFS Department of Physics recently collaborated with the Institute of Astrophysics of Andalusia (IAA) in Spain and the University College of Dublin (UCD) in Ireland, to install a robotic telescope at the Boyden Observatory. Pictured here, are from the bottom, Teboho Rakotsoana and Simon Rakotsoana from the UFS; Emilio J Garcia from the Institute of Astrophysics of Andalusia; Prof Pieter Meintjes; and Prof Antonio M Carrillo from UCD.

The Astrophysics Research Group in the Department of Physics at the University of the Free State (UFS) is part of an international collaboration with the Institute of Astrophysics of Andalusia (IAA) in Spain and the University College of Dublin (UCD) in Ireland, which focuses on measuring the brightness of transient sources. Knowledge gained from studying these cosmic X-ray sources, which seem to appear in the sky for a short time before disappearing, will lead to a more complete and better understanding of the universe, believes Prof Pieter Meintjes, Professor of Physics and Head of the Astrophysics Programme in the Department of Physics.

To facilitate these observations, a robotic telescope network has been established, with the Boyden Observatory selected as one of the sites for BOOTES 6 (a Burst Observer and Optical Transient Exploring System).

The UFS and the IAA started working on this project more than two years ago. The foundation and pier were built through a local tender, and in January 2020, part of the dome of the structure housing the telescope arrived by ship. Due to the COVID-19 pandemic there were some delays, resulting in the crew from Spain only arriving in South Africa with the telescope and hardware in November 2021, but having to return to their country without completing the installation. They returned in April, and in early May completed assembling the telescope in collaboration with UFS researchers and technicians.

Robotic telescope opportunity to further own research

The main scientific objective of the robotic telescope is to observe and monitor the optic counterparts of gamma-ray bursts as quickly as possible when detected from space or other ground-based observatories.

Prof Meintjes says they will use the telescope to observe these transient sources that goes into an eruptive phase for a short span of time. “Since BOOTES has an enormously fast slew rate, it can start observations of erupting sources within a few seconds, which allows the Astrophysics Research Group to get data very quickly. This will certainly give us an edge over other international astronomy groups that are also involved in the same type of research,” says Prof Meintjes, the local coordinator of the project who is overseeing the whole operation locally. 

He explains the importance of monitoring these packets of enormous energy. “By observing the optical afterglow of the gamma-ray bursts, we can establish its point of origin in space. Furthermore, the shape of the optical afterglow light curve gives insight into the type of mechanism behind the gamma-ray burst, i.e., whether the burst is produced by a collision between two neutron stars or by the explosion of a hypernova event.” 

The knowledge gained with research made possible by the robotic telescope will lead to a more complete and better understanding of the universe. – Prof Peter Meintjes

The UFS Astrophysics Research Group, with its research focus on high-energy astronomy and the physics behind gamma-ray bursts, has a particular interest in this project. As the local custodians of the project and in terms of a memorandum of understanding, the group is guaranteed a certain amount of telescope time for its own in-house observation programmes.

Project expands UFS’ international research footprint

Besides the opportunity for knowledge exchange, this project establishes Bloemfontein as a region where research of international quality is being done and will help to attract talented learners to the UFS. “The successful operation of the robotic telescope may also draw more international groups to bring robotic telescopes to Boyden, thus expanding our international research footprint,” he adds. 

The fact that the Boyden Observatory is in the Southern Hemisphere and has access to the galactic centre region with its host of very interesting astronomical objects and the Magellanic Clouds, makes it a very attractive site for astronomical research,” says Prof Meintjes. 

(Dr Pat van Heerden from the UFS Department of Physics. Photo: Supplied)

“We also have a number of years of experience in robotic telescopes in the sense that we have been hosting the Watcher telescope, operated by the University College Dublin in Ireland, since 2001. Once mounted in middle May 2022, this will then be Boyden’s second robotic telescope.”

News Archive

UFS lecturer overcomes barriers to become world-class researcher
2016-09-05

Description: Dr Magteld Smith researcher and deaf awareness activist Tags: Dr Magteld Smith researcher and deaf awareness activist

Dr Magteld Smith researcher and deaf awareness
activist, from the Department of Otorhinolaryngology
at the UFS.
Photo: Nonsindiso Qwabe

Renowned author and disability activist Helen Keller once said the problems that come with being deaf are deeper and more far-reaching than any other physical disability, as it means the loss of the human body’s most vital organ, sound.

Dr Magteld Smith, researcher at the Department of Otorhinolaryngology (Ear, Nose and Throat) at the University of the Free State, said hearing loss of any degree can have psychological and sociological implications which may impair the day-to-day functioning of an individual, as well as preventing the person from reaching full potential. That is why Smith is making it her mission to bring about change in the stigmatisation surrounding deafness.

Beating the odds
Smith was born with bilateral (both ears) severe hearing loss, which escalated to profound deafness. But she has never allowed it to hinder her quality of life. She matriculated from a school for the deaf in 1985. In 2008 she received a cochlear implant   a device that replaces the functioning of the damaged inner ear by providing a sense of sound to the deaf person   which she believes transformed her life. Today, she is the first deaf South African to possess two masters degrees and a PhD.

She is able to communicate using spoken language in combination with her cochlear implant, lip-reading and facial expressions. She is also the first and only deaf person in the world to have beaten the odds to become an expert researcher in various fields of deafness and hearing loss, working in an Otorhinolaryngology department.

Advocating for a greater quality of life
An advocate for persons with deafness, Smith conducted research together with other experts around the world which illustrated that cochlear implantation and deaf education were cost-effective in Sub-Saharan Africa. The cost-effectiveness of paediatric cochlear implantation has been well-established in developed countries; but is unknown in low resource settings.

However, with severe-to-profound hearing loss five times higher in low and middle-income countries, the research emphasises the need for the development of cost-effective management strategies in these settings.

This research is one of a kind in that it states the quality of life and academic achievements people born with deafness have when they use spoken language and sign language as a mode of communication is far greater than those who only use sign language without any lip-reading.

Deafness is not the end

What drives Smith is the knowledge that deaf culture is broad and wide. People with disabilities have their own talents and skills. All they need is the support to steer them in the right direction. She believes that with the technological advancements that have been made in the world, deaf people also have what it takes to be self-sufficient world-changers and make a lasting contribution to humanity.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept