Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 May 2022 | Story Leonie Bolleurs | Photo Unsplash
Quantity  Surveying and Construction management
The UFS Department of Quantity Surveying and Construction Management received the stamp of approval from SACQSP when it was fully accredited by this body for its course content.

The Department of Quantity Surveying and Construction Management in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) remains a preferred destination for built-environment programmes.
 
It received full accreditation for the BSc Quantity Surveying Level 7 (undergraduate) and the BSc Quantity Surveying Level 8 (honours degree) from the South African Council for the Quantity Surveying Profession (SACQSP) for the period 2018-2022.

The Head of Department, Prof Kahilu Kajimo-Shakantu, says: “This is not only a validation that we are meeting and exceeding the minimum requirements set by SACQSP, but that as one of only five tertiary institutions offering degree courses with full accreditation in the country, we compete and are counted among the best of the best.”

She believes it is extremely important for the Department of Quantity Surveying and Construction Management to maintain its accreditation. The next accreditation visit is scheduled for 29 July 2022 for accreditation for the period 2023-2027. 

According to Pierre Oosthuizen, Lecturer in the department, both their residential and compact (formally distance) contact learning programmes – bachelor’s and honours degrees – received full accreditation. 

This achievement is also in line with the department’s vision of constantly striving to attain the highest level of quality and credibility; to always reflect an image of established principles in science practice. 

Valuable and accepted qualification

Oosthuizen continues, saying: “The main goal of the Quantity Surveying programme is to prepare competent and industry-ready professional candidates. With this stamp of approval from SACQSP, we are giving prospective and current students the assurance that the degrees presented by our department are recognised by the South African built environment as a relevant, valuable, and accepted qualification for the profession.”

“Graduates from accredited institutions also have a better chance of getting employment, and they can register as candidates with the council to become professional quantity surveyors,” adds Prof Kajimo-Shakantu.

Receiving accreditation for its degrees, the department improves its standing among peer institutions and industry stakeholders. Furthermore, it is in a favourable position to contribute to the South African government’s list of scarce skills with the quantity surveying, construction management, and property-related programmes it offers.

Of the most popular modules presented by the department is the compact (formally distance) contact learning programmes. These programmes also adhere to the requirements of the South African Qualification Authority (SAQA) and the National Qualification Framework (NQF). 

Oosthuizen states: “Accredited compact (formally distance) contact learning Quantity Surveying programmes are uncommon in South Africa. Our department is proud to have a stellar history of presenting Quantity Surveying programmes over the past 15 years to students who do not have the resources to attend classes on campus or who are working full time in the construction industry.” 

“The department is now also considering alternative entry routes via the UFS extended programme and the recognition of prior learning initiative,” Oosthuizen adds. 

According to Prof Kajimo-Shakantu, the department is also proud of the customised work-integrated learning modules it has introduced in its programme – effective 2021 – giving students better opportunities to link theory with industry/practice. “The value of the BSc programme called Construction Economics and Management (CEM) cannot be overemphasised, because it gives students the core knowledge of both Quantity Surveying and Construction Management. Students can decide which honours to do upon completion of the Quantity Surveying and Construction Management modules, thus helping to prepare the career readiness of our students early in their formative years.”

Allow students to fulfil their dreams

“Professional quantity surveyors play an undeniably crucial role in the construction industry, contributing to the physical, economic, and social environments,” says Oosthuizen. 

Adhering to a list of more than 19 accreditation criteria, including matters related to programme design, academic staffing, programme effectiveness, teaching and learning strategy, student assessment policies and procedures, and its assessment system, the department is fulfilling a valuable role in preparing candidate quantity surveying professionals for the South African and international built environment.

Besides the quality of its course content and processes, the department is also proud of the students it delivers. According to Prof Kajimo-Shakantu, several of their students received national recognition for their academic excellence as well as leadership potential, for example scooping up the prestigious Association of South African Quantity Surveyors (ASAQS) Gold Medal award a few times.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept