Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

Stress and fear on wild animals examined
2013-06-04

 

Dr Kate Nowak in the Soutpansberg Mountain
Photo: Supplied
04 June 2013

Have you ever wondered how our wild cousins deal with stress? Dr Kate Nowak, visiting postdoctoral researcher at the Zoology and Entomology Department at the UFS Qwaqwa Campus, has been assigned the task to find out. She is currently conducting research on the effects that stress and fear has on primate cognition.

The Primate and Predator project has been established over the last two years, following Dr Aliza le Roux’s (also at the Zoology and Entomology Department at Qwaqwa) interest in the effects of fear on primate cognition. Dr le Roux collaborates with Dr Russel Hill of Durham University (UK) at the Lajuma Research Centre in Limpopo and Dr Nowak has subsequently been brought in to conduct the study.

Research on humans and captive animals has indicated that stress can powerfully decrease individuals’ cognitive performance. Very little is known about the influence of stress and fear on the cognition of wild animals, though. Dr Nowak will examine the cognition of wild primates during actual risk posed by predators. This is known as the “landscape of fear” in her research.

“I feel very privileged to be living at Lajuma and on top of a mountain in the Soutpansberg Mountain Range. We are surrounded by nature – many different kinds of habitats including a tall mist-belt forest and a variety of wildlife which we see regularly, including samangos, chacma baboons and vervet monkeys, red duiker, rock hyrax, banded mongooses, crowned eagles, crested guinea fowl and cape batis. And of course those we don't see but find signs of, such as leopard, genet, civet and porcupine. Studying the behaviour of wild animals is a very special, and very humbling, experience, reminding us of the diversity of life of which humans are only a very small part,” said Dr Nowak.

At present, the research team is running Giving up Densities (GUD) experiments. This represents the process during which an animal forsakes a patch dense with food to forage at a different spot. The animal faces a trade-off between meeting energy demands and safety – making itself vulnerable to predators such as leopards and eagles. Dr le Roux said that, “researchers from the US and Europe are embracing cognitive ecology, revealing absolutely stunning facts about what animals can and can’t do. Hence, I don’t see why South Africans cannot do the same.”

Dr Nowak received the Claude Leon Fellowship for her project. Her research as a trustee of the foundation will increase the volume and quality of research output at the UFS and enhance the overall culture of research. Her analysis on the effect that stress and fear have on wild primates’ cognition will considerably inform the emerging field of cognitive ecology.

The field of cognitive ecology is relatively new. The term was coined in the 1990s by Les Real to bring together the fields of cognitive science and behavioural ecology.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept