Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

Multi-disciplinary research approach at UFS
2005-10-25

UFS follows multi-disciplinary research approach with opening of new centre 

“A new way of doing business in necessary in the research and teaching of agriculture and natural sciences in South Africa.  We must move away from  departmentalised research infrastructures and a multi-disciplinary approach to research involving several disciplines must be adapted,” said Prof Herman van Schalkwyk, Dean:  Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS).   

Prof van Schalkwyk delivered the keynote address during the launch of the Centre for Plant Health Management (CePHMa) at the Main Campus in Bloemfontein today (21 October 2005).  CePHMa is an initiative of the UFS Department of Plant Sciences.

According to Prof van Schalkwyk a tertiary institution must practice multi-disciplinary research to be a world-class research institution.  “It is difficult for researchers to admit that they do not know a lot about each other’s area of speciality.  It is therefore necessary for researchers to make a paradigm shift and to focus on inter-disciplinary co-operation.  To do this, we must encourage them to work together and to find a common language to communicate ideas en establish symbiotic relationships,” said Prof Van Schalkwyk.

“We tend to think that research is better and faster if it is specialised.  This is not true.  The new generation of scientists are young and they are trained to form a concept of the total system and not to focus on a specific area of speciality.  At the UFS we encourage this approach to research.  This was one of the main reasons for the establishment of CePHMa,” said Prof Van Schalkwyk.
CePHMa is the only centre of its kind in Africa and is established to extend the expertise in plant health management in South Africa and in Africa, to train experts in plant health and to conduct multi-disciplinary research about the health of agricultural crops.  

“CePHMa is a virtual centre comprising of ten disciplines applicable to crop production and crop protection,” said Prof Wijnand Swart, Chairperson of CePHMa during the opening ceremony.

“The UFS is the leading institution in Africa in terms of news crop development and manages three research programmes that concentrate on new crops, i.e. the New Crop Pathology Programme, the New Crop Development Programme and the Insects on New Crops Programme.  Other applied research programmes that are unique to the UFS are genetic resistance to rust diseases of small grain crops and sustainable integrated disease management of field crops,” said Prof Swart.

“Because the expected growth in population will be 80% in 2020 in sub-Saharan Africa, the future demands of food produce in Africa will be influenced.  Therefore research will in future be focused on ways to improve food security by employing  agricultural systems that are economically viable and environmentally sound,” said Prof Swart.

“Thorough knowledge of the concept of holistic plant health management is crucial to meet the challenge and it is therefore imperative that innovative crop protection and crop production strategies, with particular emphasis on plant health, be adopted.  This is why the Department of Plant Sciences initiated the establishment of CePHMA,” he said.

According to Prof Swart there is a shortage of expertise in plant health management.  “The UFS has shown the potential to address the demand of the sub-continent of Africa regarding expertise training and CePHMa is the leader in southern Africa to provide in this need,” he said.

The appropriateness and quality of training in plant health management is reflected in the fact that students from Ethiopia, Eritrea, Malawi, Uganda, Zambia, Ghana, Tanzania, Cameroon, Angola, Mozambique and Lesotho have already been trained or are in the process of being trained in at the UFS.

Scientists from CePHMa have forged partnerships with numerous national and international institutions including the Agricultural Research Council (ARC), various community trusts, seed, pesticide and agricultural chemical companies, in addition to overseas universities. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
21 October 2005

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept