Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

UFS staff to get a minimum of 4,71 percent salary increase
2005-11-25

The University of the Free State (UFS) management and trade unions have agreed on a minimum of 4,71 percent salary increase for 2006 as well as a once-off non-pensionable bonus of R1200 payable in December 2005.

The agreement was signed today by representatives of the UFS management and the trade unions, UVPERSU and NEHAWU, in Bloemfontein.

Prof Niel Viljoen, Chief Director: Operations at the UFS and chairperson of the UFS Council’s representatives, and Prof Johan Grobbelaar, chairperson of the joint Union Forum, said: “The bonus is payable in December 2005 in recognition of the role that staff played during the year to promote the UFS as a university of excellence.”

He said the intention is to pass the maximum benefit possible on to staff without exceeding the limits of financial sustainability of the institution.
For this reason the negotiating parties reaffirmed their commitment to the Multiple-year Income-related Remuneration Improvement Model used as a framework for negotiations.

Proff Viljoen and Prof Grobbelaar said one of the factors that influence the model and therefore the negotiations is the level of subsidy the UFS receives from the government.

“As the state subsidy level is unfortunately not yet known, remuneration could vary several percentage points between a window of 4,71 and 5,5 percent. Should the state subsidy be such that the increase would fall outside this window then the parties will renegotiate.”

Proff  Viljoen and Prof Grobbelaar said the R1200 bonus is payable to staff members who were in the employ of the UFS on UFS conditions of service on 21 November 2005 and who assumed duties before 1 October 2005. There are however some exceptions.

The agreement signed today also provides for restructuring funds of R752 000 to address partial backlogs in support services, including an increase in the medical allowance of 640 staff members.

The implementation date for the salary adjustment is 1 January 2006, but could be implemented on a later date due to logistical arrangements.

Proff Viljoen and Prof Grobbelaar said the UFS and unions could reach an agreement despite the declining phase in income and the generally more difficult financial environment in which universities operate.

Prof Grobbelaar said salary negotiations are never easy, but the model is an important tool. The model made it possible to tie up salary negotiations for November 2006. “This is unique for any higher education institution.”

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
24 November 2005

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept