Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

SASOL TRAC laboratory launched at UFS Qwaqwa Campus
2006-05-08

Some of the guests attending the launch of the Sasol TRAC Laboratory at the University of the Free State's (UFS) Qwaqwa Campus were from the left Prof Peter Mbati (Principal of the Qwaqwa Campus), Mrs Zimbini Zwane ( Communications Manager of Sasol Infrachem), Prof Gerhardt  de Klerk (Dean : UFS Faculty of the Humanities), Prof Fred Hugo
 Director of TRAC SA) and Prof Jack van der Linde (Director of RIEP at the UFS).

SASOL TRAC laboratory launched at UFS Qwaqwa Campus

The Research Institute for Education Planning (RIEP) of the University of the Free State (UFS) today unveiled the Sasol TRAC Laboratory at its Qwaqwa campus.

The laboratory will be used to help grade 10, 11 and 12 learners and educators from the Qwaqwa region to conduct the experiments from the physical sciences outcome-based curriculum.

“The Sasol TRAC Laboratory introduces learners not only to the latest technology used by engineers and other scientists in practice but also to stimulate the learner’s interest in the field of science in such a way that more of them will enter into science related careers,” says Mr Cobus van Breda, Co-ordinator of the TRAC Free State Regional Centre.

According to Mr van Breda the newly established Sasol TRAC Laboratory will enable RIEP to train learners and their educators in Physical Sciences.  The laboratory will consist of six work stations equipped with computers and electronic sensors.

“Learners from the Qwaqwa region will visit the Sasol TRAC Laboratory on regular basis to conduct experiments based on the curriculum.  Data will be collected with electronic apparatus and presented as graphs on the computer so that results can be analysed and interpreted,” says Mr van Breda.

“There is a serious shortage of suitable qualified teachers in maths and science in the Qwaqwa region.  Many schools in the region are not yet part of the RIEP project and are in dire need of assistance.  A large number of these schools are in remote areas not reached regularly by intervention programmes,” says Prof Peter Mbati, Principal of the UFS Qwaqwa Campus.

“The establishment of the Sasol TRAC Laboratory at the Qwaqwa Campus provides us the opportunity to engage with our community and assist in the development and training of these vital education subjects.  We are pleased that Sasol agreed to fund the project,” says Prof Mbati.

Students from the Qwaqwa Campus will also benefit from the TRAC programme.   “Some promising students will also undergo further training and become assistants for the TRAC programme,” says Prof Mbati. 

“Nurturing science and mathematical skills is of great importance in growing our national economy. Annually, Sasol invests more than R50 million in supporting mathematical and science education in South Africa. Our primary aim is to increase the number of learners gaining access to tertiary education in the science fields. Therefore, our Corporate Social Investment (CSI) education interventions at secondary school level focus on educator development and direct learner interventions such as the Sasol TRAC Laboratory,” explains Ms Pamilla Mudhray, CSI and SHARP manager at Sasol.

According to Ms Mudhray the implementation of the National Curriculum Statement for physical sciences in the further education and training (FET) phase from 2006, under resourced schools will need greater access to the tools and equipment necessary to teach the syllabus and fulfil the ideals of the curriculum.

TRAC South Africa is a national non-profit programme focused on supporting and expanding science, mathematics and technology education in secondary schools. The programme was first introduced to South Africa in 1994. In 2005, RIEP established the TRAC Free State regional centre on the UFS Main Campus in Bloemfontein.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
5 May 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept