Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

Shack study holds research and social upliftment opportunities
2015-02-10

Photo: Stephen Collett

When Prof Basie Verster, retired head of the Department of Quantity Surveying at the University of the Free State (UFS), initiated an alternative form of housing for Johannes - one of his employees - a decision was made to base research on this initiative. This research project in Grasslands, Heidedal focused on the cost and energy efficiency of green and/or sustainable shacks.

Esti Jacobs from the Department of Quantity Surveying, together with an honours student in Quantity Surveying, a master’s student in Architecture, and young professionals at Verster Berry, helped with the project.

The physical goals of the project were to create a structure that is environmentally friendly, and maintains a comfortable interior climate in winter and summer, as well as being cost-effective to erect. The structure also had to be socially acceptable to the family and the community.

“The intention was to make a positive contribution to the community and to initiate social upliftment through this project. Structures such as the ‘green shack’ may serve as an intermediate step to future housing possibilities, since these structures are relatively primitive, but have economic value and could be marketable,” she said.

Esti explains the structure of the building, which consists of gum poles and South African pine bearers, with a timber roof and internal cement block flooring. The building is clad with corrugated iron and has a corrugated iron roof finish. Additional green elements added to the structure were internal Nutec cladding, glasswool insulation in walls, internal gypsum ceiling boards with ‘Think Pink’ insulation, internal dividing wall and door, polystyrene in the floors, and tint on the windows. A small solar panel for limited electricity use (one or two lights and electricity to charge a cellphone) and a Jojo water tank for household consumption by the inhabitants were also installed.

Esti said: “Phase one of the research has been completed. This phase consisted of an investigation into the cost of an alternative form of housing structure (comparing traditional shacks with the planned structure) as well as the construction process of the physical housing structure.

“Phase two of the research, commencing in February 2015, will last for two to three years. This phase will include the installation of temperature and relative humidity logging devices inside the existing traditional shack and the new green shack. The logs will be regularly monitored by the UFS Department of Quantity Surveying and Construction Management.

These data will enable the researchers to measure the differences in comfort levels inside the two different structures. The data, together with other information such as building materials and methods, are then processed by software programs. Through the simulation of different environments, building materials, and alternate forms of energy, software models can be used to come up with conclusions regarding more energy-friendly building materials and methods. This knowledge can be used to improve comfort levels within smaller, low-cost housing units.

The UFS will be working with Prof Jeff Ramsdell of the Appalachian State University in the USA and his team on the second phase of the project.

“This research project is ongoing and will be completed only in a few years’ time,” said Esti.

The results of the research will be published in accredited journals or at international conferences.

 

For more information or enquiries contact news@ufs.ac.za.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept