Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

Chemistry Department expands its international footprint
2015-10-14

Prof André Roodt

Prof André Roodt from the Department of Chemistry at the University of the Free State has returned from a research visit at the St Petersburg State University in Russia. The research he conducted at the St Petersburg State University is part of a bilateral collaboration agreement between the University of the Free State and St Petersburg State University.

As part of his visit to Russia (from 17 to 28 September 2015), Prof Roodt presented a seminar at St Petersburg State University, and a lecture at the conference titled: International conference on Organometallic and Coordination Chemistry: Achievements and Challenges.

One of the local Russian newspapers quoted Prof Roodt as “world-renowned expert in the study of chemical kinetics and mechanisms of chemical reactions”. His presentation: Are detailed reaction mechanisms really necessary in (applied) organometallic and coordination chemistry' attracted great interest from the St Petersburg chemists.

The bilateral agreement came to life a year ago when the St Petersburg State University chemists won a grant in a competition to create an international research group, the International Laboratory of Organometallic Chemistry. The Laboratory is headed by Prof Vadim Kukushkin of the St Petersburg State University.

In addition to the employees of St Petersburg University, the research group consists of researchers from Portugal, Finland, South Africa, and Azerbaijan. Together, these groups of scientists are working on the problem of non-reactive metal activation molecules. The main theme of the research laboratory is in the catalysis and activation of metal inert molecules which then undergo significant change, and become meaningful to people chemicals, such as drugs.

As part of this initiative, a bilateral collaboration agreement exists between the St Petersburg State University and the UFS (Russian Science Foundation grant 14-43-00017). Students from our university have visited and conducted research at the St Petersburg State University while some of their students visit and research reaction kinetics at the UFS.

Prof Roodt hosted Valeria Burianova, a student from the St Petersburg University. During her visit at the UFS, she learned about response kinetics. A UFS PhD student, Carla Pretorius, joined the group in Russia where she conducted research on the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and a  potential for harvesting sun energy.

The UFS Department of Chemistry extended its international footprint further with three of its students, Mampotsu Tsosane, Petrus Mokolokolo, and Tom Kama, returning from Switzerland after a six-week research visit in the group of Prof Roger Alberto from the University of Zürich. In return, Prof Roodt hosted a Swiss PhD student, Angelo Frei from Zürich, and taught him more about reaction mechanisms.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept