Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

UFS extends footprint abroad
2015-12-14

In its constant pursuit of research excellence, the UFS has this year performed well in mainly two areas.

Apart from the research done by the UFS on national level, e.g. the involvement of its researchers with the SKA telescope, the pioneering work they do with the satellite tracking of giraffes, as well as research on trauma, forgiveness and reconciliation – to name but a few of the research areas, the university also has a research focus abroad.

Japan, Europe, America and Botswana. These are just some of the places where academics from the university are involved in research abroad.

Japan

Dr Dirk Opperman, Senior Lecturer at the Department of Microbial, Biochemical and Food Biotechnology, and Carmien Tolmie, a PhD student in the same department, visited the Okinawa Institute of Science and Technology in Onna, Japan, during November and December 2014. During the visit, experiments were performed in the Microbiology and Biochemistry of Secondary Metabolite Unit of Dr Holger Jenke-Kodama.

This formed part of a larger NRF-funded project on carcinogenic toxins produced in certain Aspergillus fungi. These fungi infect food and feedstuff and are a big concern in developing countries because it may lead to severe economic losses. The research ultimately aims to find inhibitors to block the production of these fungal toxins.



Europe and America

In 2012, an international network was established in the frame of the FP7-PEOPLE-2011-IRSES programme, called hERG-related risk assessment of botanicals (hERGscreen). The South African group included Dr Susan Bonnet and Dr Anke Wilhelm, both from the UFS Department of Chemistry.

Extracts from more than 450 South African plant species have been investigated systematically to assess the potential cardiotoxic risk of commonly consumed botanicals and supplements. The idea of the project, funded by the European Commission, is to identify safety liabilities of botanicals.

Other international partners included the University of Innsbruck, National and Kapodistrian University of Athens, Biomedical Research Foundation of the Academy of Athens, University of Basel, University of Vienna, University of Florida, Universidade Federal do Rio Grande do Sul, Universidade Federal de Santa Catarina.

Botswana


A memorandum of understanding was signed between the UFS and Botho University in Botswana in September 2015, which will be valid for three years.

The agreement, includes student and staff exchange programmes, collaborative research, teaching and learning and community engagement activities, sharing of results, and PhD/ MPhil guidance.

Young researchers

Another research focus of the UFS is the development of its young researchers. In 2015, the UFS has delivered 13 Y-rated researchers. Ten of the researchers are from the Faculty of Natural and Agricultural Sciences and three from the Faculty of the Humanities. Three of them received an Y1 rating from the NRF.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept